These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 34955763)
1. Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure. Koga D; Kusumi S; Shibata M; Watanabe T Front Neuroanat; 2021; 15():759804. PubMed ID: 34955763 [TBL] [Abstract][Full Text] [Related]
2. Backscattered electron imaging of resin-embedded sections. Koga D; Kusumi S; Watanabe T Microscopy (Oxf); 2018 Jun; ():. PubMed ID: 29920601 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional analysis of the intracellular architecture by scanning electron microscopy. Koga D; Kusumi S; Yagi H; Kato K Microscopy (Oxf); 2024 Jun; 73(3):215-225. PubMed ID: 37930813 [TBL] [Abstract][Full Text] [Related]
4. Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus. Koga D; Ushiki T; Watanabe T Anat Sci Int; 2017 Jan; 92(1):37-49. PubMed ID: 27785745 [TBL] [Abstract][Full Text] [Related]
5. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Koga D; Kusumi S; Shodo R; Dan Y; Ushiki T Microscopy (Oxf); 2015 Dec; 64(6):387-94. PubMed ID: 26206941 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Koga D; Kusumi S; Ushiki T Microscopy (Oxf); 2016 Apr; 65(2):145-57. PubMed ID: 26609075 [TBL] [Abstract][Full Text] [Related]
7. Backscattered electron image of osmium-impregnated/macerated tissues as a novel technique for identifying the cis-face of the Golgi apparatus by high-resolution scanning electron microscopy. Koga D; Bochimoto H; Watanabe T; Ushiki T J Microsc; 2016 Jul; 263(1):87-96. PubMed ID: 26807791 [TBL] [Abstract][Full Text] [Related]
8. Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies. Lewczuk B; Szyryńska N Animals (Basel); 2021 Nov; 11(12):. PubMed ID: 34944167 [TBL] [Abstract][Full Text] [Related]
9. A workflow for 3D-CLEM investigating liver tissue. Kremer A; VAN Hamme E; Bonnardel J; Borghgraef P; GuÉrin CJ; Guilliams M; Lippens S J Microsc; 2021 Mar; 281(3):231-242. PubMed ID: 33034376 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in electron microscopy for the diagnosis and research of glomerular diseases. Honda K; Takaki T; Kang D Kidney Res Clin Pract; 2023 Mar; 42(2):155-165. PubMed ID: 35545227 [TBL] [Abstract][Full Text] [Related]
11. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM. Rizzo NW; Duncan KE; Bourett TM; Howard RJ J Microsc; 2016 Aug; 263(2):142-7. PubMed ID: 26708578 [TBL] [Abstract][Full Text] [Related]
12. Correlative light microscopy, scanning electron microscopy, and transmission electron microscopy of osmium-macerated biological tissues. Scala C; Cenacchi G; Apkarian RP; Preda P; Pasquinelli G J Electron Microsc (Tokyo); 1990; 39(6):508-10. PubMed ID: 2094756 [TBL] [Abstract][Full Text] [Related]
13. Integrative method for three-dimensional imaging of the entire Golgi apparatus by combining thiamine pyrophosphatase cytochemistry and array tomography using backscattered electron-mode scanning electron microscopy. Koga D; Kusumi S; Ushiki T; Watanabe T Biomed Res; 2017; 38(5):285-296. PubMed ID: 29070778 [TBL] [Abstract][Full Text] [Related]
14. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario. Handschuh S; Baeumler N; Schwaha T; Ruthensteiner B Front Zool; 2013 Aug; 10(1):44. PubMed ID: 23915384 [TBL] [Abstract][Full Text] [Related]
15. En bloc staining with hydroquinone treatment for block face imaging. Togo A; Ohta K; Higashi R; Nakamura K Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i34-i35. PubMed ID: 25359840 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen FIB spin milling enables correlative workflow for 3D super-resolution light microscopy and serial FIB/SEM of cultured cells. Wang J; Randolph S; Wu Q; Botman A; Schardt J; Bouchet-Marquis C; Nan X; Rue C; Straw M Sci Rep; 2021 Jun; 11(1):13162. PubMed ID: 34162977 [TBL] [Abstract][Full Text] [Related]
17. Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue. Goggin P; Ho EML; Gnaegi H; Searle S; Oreffo ROC; Schneider P Bone; 2020 Feb; 131():115107. PubMed ID: 31669251 [TBL] [Abstract][Full Text] [Related]
18. Correlative Light and Scanning Electron Microscopy for Observing the Three-Dimensional Ultrastructure of Membranous Cell Organelles in Relation to Their Molecular Components. Koga D; Kusumi S; Bochimoto H; Watanabe T; Ushiki T J Histochem Cytochem; 2015 Dec; 63(12):968-79. PubMed ID: 26374827 [TBL] [Abstract][Full Text] [Related]
19. Use of secondary electron detectors for compositional studies on embedded biological material. Scala C; Pasquinelli G; Martegani F; Laschi R Scan Electron Microsc; 1985; (Pt 4):1709-18. PubMed ID: 4095505 [TBL] [Abstract][Full Text] [Related]
20. Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures. Lucas MS; Günthert M; Gasser P; Lucas F; Wepf R Methods Cell Biol; 2012; 111():325-56. PubMed ID: 22857936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]