These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34956301)

  • 1. Corrigendum: Heat Shock Protein HSP24 Is Involved in the BABA-Induced Resistance to Fungal Pathogen in Postharvest Grapes Underlying an NPR1-Dependent Manner.
    Li C; Cao S; Wang K; Lei C; Ji N; Xu F; Jiang Y; Qiu L; Zheng Y
    Front Plant Sci; 2021; 12():812672. PubMed ID: 34956301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Shock Protein HSP24 Is Involved in the BABA-Induced Resistance to Fungal Pathogen in Postharvest Grapes Underlying an NPR1-Dependent Manner.
    Li C; Cao S; Wang K; Lei C; Ji N; Xu F; Jiang Y; Qiu L; Zheng Y
    Front Plant Sci; 2021; 12():646147. PubMed ID: 33763101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism.
    Li C; Wang K; Lei C; Cao S; Huang Y; Ji N; Xu F; Zheng Y
    Mol Plant Microbe Interact; 2021 Nov; 34(11):1250-1266. PubMed ID: 34410840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1.
    Wang K; Li C; Lei C; Jiang Y; Qiu L; Zou X; Zheng Y
    Plant Physiol Biochem; 2020 Nov; 156():552-565. PubMed ID: 33059266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of Direct or Priming Resistance against Botrytis cinerea in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism.
    Wang K; Liao Y; Xiong Q; Kan J; Cao S; Zheng Y
    J Agric Food Chem; 2016 Jul; 64(29):5855-65. PubMed ID: 27368357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes.
    Lorenzini M; Azzolini M; Tosi E; Zapparoli G
    J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning.
    Sun F; Zhang P; Guo M; Yu W; Chen K
    Food Chem; 2013 May; 138(1):539-46. PubMed ID: 23265522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea.
    Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM
    Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries.
    Wang K; Liao Y; Kan J; Han L; Zheng Y
    Int J Food Microbiol; 2015 Feb; 194():32-9. PubMed ID: 25461606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preharvest application of methyl salicylate, acetyl salicylic acid and salicylic acid alleviated disease caused by Botrytis cinerea through stimulation of antioxidant system in table grapes.
    García-Pastor ME; Giménez MJ; Zapata PJ; Guillén F; Valverde JM; Serrano M; Valero D
    Int J Food Microbiol; 2020 Dec; 334():108807. PubMed ID: 32835997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric Oxide Plays an Important Role in
    Li R; Sheng J; Shen L
    Plant Pathol J; 2020 Apr; 36(2):121-132. PubMed ID: 32296292
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of antagonist
    Zhou Q; Fu M; Xu M; Chen X; Qiu J; Wang F; Yan R; Wang J; Zhao S; Xin X; Chen L
    Food Sci Nutr; 2020 Mar; 8(3):1499-1508. PubMed ID: 32180959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics to Exploit the Primed Immune System of Tomato Fruit.
    Luna E; Flandin A; Cassan C; Prigent S; Chevanne C; Kadiri CF; Gibon Y; Pétriacq P
    Metabolites; 2020 Mar; 10(3):. PubMed ID: 32155921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetic acid treatments to keep postharvest quality of "Regina" and "Taloppo" table grapes.
    Venditti T; D'Hallewin G; Dore A; Molinu MG; Fiori P; Angiolino C; Agabbio M
    Commun Agric Appl Biol Sci; 2008; 73(2):265-71. PubMed ID: 19226763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C
    J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum.
    La Guerche S; Chamont S; Blancard D; Dubourdieu D; Darriet P
    Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea.
    Zimmerli L; Métraux JP; Mauch-Mani B
    Plant Physiol; 2001 Jun; 126(2):517-23. PubMed ID: 11402183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thymol and linalool fumigation on postharvest diseases of table grapes.
    Shin MH; Kim JH; Choi HW; Keum YS; Chun SC
    Mycobiology; 2014 Sep; 42(3):262-8. PubMed ID: 25346603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations of Morphological, Anatomical, and Chemical Features of Grape Berries with Resistance to Botrytis cinerea.
    Gabler FM; Smilanick JL; Mansour M; Ramming DW; Mackey BE
    Phytopathology; 2003 Oct; 93(10):1263-73. PubMed ID: 18944326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.