These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34956359)

  • 1. End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation.
    Ruan X; Li P; Zhu X; Yu H; Yu N
    Comput Intell Neurosci; 2021; 2021():9945044. PubMed ID: 34956359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A target-driven visual navigation method based on intrinsic motivation exploration and space topological cognition.
    Ruan X; Li P; Zhu X; Liu P
    Sci Rep; 2022 Mar; 12(1):3462. PubMed ID: 35236878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of expected learning progress and perceptual novelty to curiosity-driven exploration.
    Poli F; Meyer M; Mars RB; Hunnius S
    Cognition; 2022 Aug; 225():105119. PubMed ID: 35421742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies.
    Oudeyer PY; Gottlieb J; Lopes M
    Prog Brain Res; 2016; 229():257-284. PubMed ID: 27926442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning.
    Oudeyer PY
    Behav Brain Sci; 2017 Jan; 40():e275. PubMed ID: 29342696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration for Countering the Episodic Memory.
    Zhou R; Wang Y; Zhang X; Wang C
    Comput Intell Neurosci; 2022; 2022():7286186. PubMed ID: 35419049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning tactile skills through curious exploration.
    Pape L; Oddo CM; Controzzi M; Cipriani C; Förster A; Carrozza MC; Schmidhuber J
    Front Neurorobot; 2012; 6():6. PubMed ID: 22837748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain.
    Hao J; Yang T; Tang H; Bai C; Liu J; Meng Z; Liu P; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):8762-8782. PubMed ID: 37021882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning and exploration in action-perception loops.
    Little DY; Sommer FT
    Front Neural Circuits; 2013; 7():37. PubMed ID: 23579347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning robotic manipulation skills with multiple semantic goals by conservative curiosity-motivated exploration.
    Han C; Peng Z; Liu Y; Tang J; Yu Y; Zhou Z
    Front Neurorobot; 2023; 17():1089270. PubMed ID: 36960195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strangeness-driven exploration in multi-agent reinforcement learning.
    Kim JB; Choi HB; Han YH
    Neural Netw; 2024 Apr; 172():106149. PubMed ID: 38306786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning.
    Bai C; Liu P; Liu K; Wang L; Zhao Y; Han L; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4776-4790. PubMed ID: 34851835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain.
    Jaegle A; Mehrpour V; Rust N
    Curr Opin Neurobiol; 2019 Oct; 58():167-174. PubMed ID: 31614282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning.
    Dilokthanakul N; Kaplanis C; Pawlowski N; Shanahan M
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3409-3418. PubMed ID: 30714933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy-Aware Model Initialization for Effective Exploration in Deep Reinforcement Learning.
    Jang S; Kim HI
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.