These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 34957258)
1. The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Soma Y; Morita Y; Kishino Y; Kanazawa H; Fukuda K; Tohyama S Front Cardiovasc Med; 2021; 8():774389. PubMed ID: 34957258 [TBL] [Abstract][Full Text] [Related]
3. Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy. Silver SE; Barrs RW; Mei Y Front Cardiovasc Med; 2021; 8():707890. PubMed ID: 34820426 [TBL] [Abstract][Full Text] [Related]
4. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Morita Y; Kishino Y; Fukuda K; Tohyama S Cell Prolif; 2022 Aug; 55(8):e13248. PubMed ID: 35534945 [TBL] [Abstract][Full Text] [Related]
5. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653 [TBL] [Abstract][Full Text] [Related]
6. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. Kishino Y; Tohyama S; Morita Y; Soma Y; Tani H; Okada M; Kanazawa H; Fukuda K J Card Fail; 2023 Apr; 29(4):503-513. PubMed ID: 37059512 [TBL] [Abstract][Full Text] [Related]
7. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Hemmi N; Tohyama S; Nakajima K; Kanazawa H; Suzuki T; Hattori F; Seki T; Kishino Y; Hirano A; Okada M; Tabei R; Ohno R; Fujita C; Haruna T; Yuasa S; Sano M; Fujita J; Fukuda K Stem Cells Transl Med; 2014 Dec; 3(12):1473-83. PubMed ID: 25355733 [TBL] [Abstract][Full Text] [Related]
8. Metabolism-based cardiomyocytes production for regenerative therapy. Umei TC; Tohyama S; Fukuda K J Mol Cell Cardiol; 2023 Mar; 176():11-20. PubMed ID: 36681267 [TBL] [Abstract][Full Text] [Related]
9. Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Park M; Yoon YS Korean Circ J; 2018 Nov; 48(11):974-988. PubMed ID: 30334384 [TBL] [Abstract][Full Text] [Related]
10. Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Guan X; Xu W; Zhang H; Wang Q; Yu J; Zhang R; Chen Y; Xia Y; Wang J; Wang D Stem Cell Res Ther; 2020 Feb; 11(1):73. PubMed ID: 32085809 [TBL] [Abstract][Full Text] [Related]
11. Development of Cardiac Regenerative Medicine Using Human iPS Cell-derived Cardiomyocytes. Fujita J Keio J Med; 2021 Sep; 70(3):53-59. PubMed ID: 32830153 [TBL] [Abstract][Full Text] [Related]
12. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice. Lou X; Tang Y; Ye L; Pretorius D; Fast VG; Kahn-Krell AM; Zhang J; Zhang J; Qiao A; Qin G; Kamp T; Thomson JA; Zhang J Cardiovasc Res; 2023 May; 119(4):1062-1076. PubMed ID: 36647784 [TBL] [Abstract][Full Text] [Related]
13. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Talkhabi M; Aghdami N; Baharvand H Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938 [TBL] [Abstract][Full Text] [Related]
14. Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. Tani H; Tohyama S; Kishino Y; Kanazawa H; Fukuda K J Mol Cell Cardiol; 2022 Mar; 164():83-91. PubMed ID: 34822838 [TBL] [Abstract][Full Text] [Related]
15. Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Li J; Liu L; Zhang J; Qu X; Kawamura T; Miyagawa S; Sawa Y Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354516 [TBL] [Abstract][Full Text] [Related]
16. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Ban K; Bae S; Yoon YS Theranostics; 2017; 7(7):2067-2077. PubMed ID: 28638487 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Non-Coding RNAs in Exosomes and Functional Efficacy of Human Embryonic Stem Cell- versus Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Lee WH; Chen WY; Shao NY; Xiao D; Qin X; Baker N; Bae HR; Wei TT; Wang Y; Shukla P; Wu H; Kodo K; Ong SG; Wu JC Stem Cells; 2017 Oct; 35(10):2138-2149. PubMed ID: 28710827 [TBL] [Abstract][Full Text] [Related]
18. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Moon SH; Ban K; Kim C; Kim SS; Byun J; Song MK; Park IH; Yu SP; Yoon YS Int J Cardiol; 2013 Sep; 168(1):41-52. PubMed ID: 23044428 [TBL] [Abstract][Full Text] [Related]
19. Efficient Cardiac Differentiation of Human Amniotic Fluid-Derived Stem Cells into Induced Pluripotent Stem Cells and Their Potential Immune Privilege. Fang YH; Wang SPH; Gao ZH; Wu SN; Chang HY; Yang PJ; Liu PY; Liu YW Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235313 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Matured Human Pluripotent Stem Cell-Derived Cardiomyocytes Form Grafts With Enhanced Structure and Function in Injured Hearts. Dhahri W; Sadikov Valdman T; Wilkinson D; Pereira E; Ceylan E; Andharia N; Qiang B; Masoudpour H; Wulkan F; Quesnel E; Jiang W; Funakoshi S; Mazine A; Gomez-Garcia MJ; Latifi N; Jiang Y; Huszti E; Simmons CA; Keller G; Laflamme MA Circulation; 2022 May; 145(18):1412-1426. PubMed ID: 35089805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]