These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34957946)

  • 1. High-quality quasi-parallel X-ray beam obtained by a parabolic monocapillary X-ray lens with a square beam stop.
    Zhou P; Cui J; Du Z; Zhang T; Liu Z
    J Xray Sci Technol; 2022; 30(2):261-273. PubMed ID: 34957946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical design and characterization of a novel parallel beam combined lens based on X-ray capillary optics.
    Hua L; Yuan T; Zhong Y; Li H; Hu J; Sun T; Sun X
    Opt Express; 2024 Apr; 32(8):14102-14115. PubMed ID: 38859365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjustable hollow-cone output x-ray beam from an ellipsoidal monocapillary with a pinhole and a beam stop.
    Sun XP; Liu ZG; Yi LT; Sun WY; Li FZ; Jiang BW; Ma YZ; Sun TX
    Appl Opt; 2015 Dec; 54(35):10326-32. PubMed ID: 26836854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.
    Zhu Y; Wang Y; Sun T; Sun X; Zhang X; Liu Z; Li Y; Zhang F
    Appl Radiat Isot; 2018 Jul; 137():172-176. PubMed ID: 29653299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a monocapillary with an inner Al
    Li Y; Lv W; Kong X; Zhao H; Han L
    Appl Opt; 2024 Apr; 63(11):2837-2842. PubMed ID: 38856379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High quality quasi-parallel x-ray microbeams based on a parabolic capillary.
    Wen H; Zhou M; Wu Y; Yuan T; Liu Z
    Appl Opt; 2022 May; 61(13):3656-3662. PubMed ID: 36256405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the inner diameter of monocapillary with confocal x-ray scattering technology based on capillary x-ray optics.
    Zhang X; Wang Y; Li Y; Liu Z; Sun T; Sun X
    Appl Opt; 2019 Feb; 58(5):1291-1295. PubMed ID: 30874002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of polycapillary optics dedicated to low-energy parallel-beam wavelength-dispersive spectrometers for synchrotron-based X-ray fluorescence study.
    Jagodziński P; Pajek M; Banaś D; Kubala-Kukuś A; Szlachetko J; Cotte M; Salomé M
    Opt Express; 2021 Aug; 29(17):27193-27211. PubMed ID: 34615140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcrystallography using single-bounce monocapillary optics.
    Gillilan RE; Cook MJ; Cornaby SW; Bilderback DH
    J Synchrotron Radiat; 2010 Mar; 17(2):227-36. PubMed ID: 20157276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of capillary optics as a beam intensifier for a Compton x-ray source.
    Tompkins PA; Abreu CC; Carroll FE; Xiao QF; MacDonald CA
    Med Phys; 1994 Nov; 21(11):1777-84. PubMed ID: 7891640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method.
    Chen D; Zhu S; Cao X; Zhao F; Liang J
    Biomed Opt Express; 2015 Jul; 6(7):2649-63. PubMed ID: 26203388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A planar parabolic refractive nickel lens for high-energy X-rays.
    Andrejczuk A; Nagamine M; Sakurai Y; Itou M
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):57-60. PubMed ID: 24365916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Device for source position stabilization and beam parameter monitoring at inverse Compton X-ray sources.
    Günther B; Dierolf M; Achterhold K; Pfeiffer F
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1546-1553. PubMed ID: 31490142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considerations regarding the application of capillary optics to medical radiography.
    Wang Y; Mistretta CA; Shefer RE; Manning HL
    Med Phys; 1992; 19(3):533-44. PubMed ID: 1508087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A laboratory based system for laue micro x-ray diffraction.
    Lynch PA; Stevenson AW; Liang D; Parry D; Wilkins S; Tamura N
    Rev Sci Instrum; 2007 Feb; 78(2):023904. PubMed ID: 17578120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.
    Sawkey DL; Faddegon BA
    Med Phys; 2009 Mar; 36(3):698-707. PubMed ID: 19378730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MO-A-BRB-02: Facts and Fiction of Flattening Filter Free (FF-FFF) X-Rays Beams.
    Ting J
    Med Phys; 2012 Jun; 39(6Part20):3861-3862. PubMed ID: 28517518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray collimation by the parabolic cylinder mirror in SPring-8/BL29XUL.
    Takei D; Kohmura Y; Senba Y; Ohashi H; Tamasaku K; Ishikawa T
    J Synchrotron Radiat; 2016 Jan; 23(1):158-62. PubMed ID: 26698058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray focusing by the system of refractive lens(es) placed inside asymmetric channel-cut crystals.
    Grigoryan AH; Balyan MK; Toneyan AH
    J Synchrotron Radiat; 2010 May; 17(3):332-47. PubMed ID: 20400831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.
    Kim J; Shi X; Casa D; Qian J; Huang X; Gog T
    J Synchrotron Radiat; 2016 Jul; 23(Pt 4):880-6. PubMed ID: 27359136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.