BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34958088)

  • 1. Spinal Cord Transection In Xenopus laevis Tadpoles.
    Slater PG; Larraín J
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 34958088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system.
    Lee-Liu D; Méndez-Olivos EE; Muñoz R; Larraín J
    Neurosci Lett; 2017 Jun; 652():82-93. PubMed ID: 27693567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages.
    Lee-Liu D; Moreno M; Almonacid LI; Tapia VS; Muñoz R; von Marées J; Gaete M; Melo F; Larraín J
    Neural Dev; 2014 May; 9():12. PubMed ID: 24885550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord regeneration in Xenopus laevis.
    Edwards-Faret G; Muñoz R; Méndez-Olivos EE; Lee-Liu D; Tapia VS; Larraín J
    Nat Protoc; 2017 Feb; 12(2):372-389. PubMed ID: 28102835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.
    Taniguchi Y; Watanabe K; Mochii M
    BMC Dev Biol; 2014 Jun; 14():27. PubMed ID: 24941877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons.
    Belrose JL; Prasad A; Sammons MA; Gibbs KM; Szaro BG
    BMC Genomics; 2020 Aug; 21(1):540. PubMed ID: 32758133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells.
    Gaete M; Muñoz R; Sánchez N; Tampe R; Moreno M; Contreras EG; Lee-Liu D; Larraín J
    Neural Dev; 2012 Apr; 7():13. PubMed ID: 22537391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Proteomics After Spinal Cord Injury (SCI) in a Regenerative and a Nonregenerative Stage in the Frog
    Lee-Liu D; Sun L; Dovichi NJ; Larraín J
    Mol Cell Proteomics; 2018 Apr; 17(4):592-606. PubMed ID: 29358338
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Borodinsky LN
    Front Neural Circuits; 2017; 11():90. PubMed ID: 29218002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis.
    Edwards-Faret G; González-Pinto K; Cebrián-Silla A; Peñailillo J; García-Verdugo JM; Larraín J
    Neural Dev; 2021 Feb; 16(1):2. PubMed ID: 33526076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foxm1 regulates neural progenitor fate during spinal cord regeneration.
    Pelzer D; Phipps LS; Thuret R; Gallardo-Dodd CJ; Baker SM; Dorey K
    EMBO Rep; 2021 Sep; 22(9):e50932. PubMed ID: 34427977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of functional recovery in a larval zebrafish model of spinal cord injury.
    Hossainian D; Shao E; Jiao B; Ilin VA; Parris RS; Zhou Y; Bai Q; Burton EA
    J Neurosci Res; 2022 Nov; 100(11):2044-2054. PubMed ID: 35986577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in
    Hamilton AM; Balashova OA; Borodinsky LN
    Elife; 2021 May; 10():. PubMed ID: 33955353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System.
    Reverdatto S; Prasad A; Belrose JL; Zhang X; Sammons MA; Gibbs KM; Szaro BG
    BMC Genomics; 2022 Jan; 23(1):2. PubMed ID: 34979916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuromuscular junction of Xenopus tadpoles: Revisiting a classical model of early synaptogenesis and regeneration.
    Bermedo-García F; Ojeda J; Méndez-Olivos EE; Marcellini S; Larraín J; Henríquez JP
    Mech Dev; 2018 Dec; 154():91-97. PubMed ID: 29807117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs.
    Beattie MS; Bresnahan JC; Lopate G
    J Neurobiol; 1990 Oct; 21(7):1108-22. PubMed ID: 2258724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial function in spinal cord injury and regeneration.
    Slater PG; Domínguez-Romero ME; Villarreal M; Eisner V; Larraín J
    Cell Mol Life Sci; 2022 Apr; 79(5):239. PubMed ID: 35416520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.