These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34958167)

  • 61. Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy.
    Zhang P; Wang F; Liu W; Mao X; Hao C; Zhang Y; Fan C; Hu J; Wang L; Li B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21973-21981. PubMed ID: 31117423
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Organizing DNA origami tiles into larger structures using preformed scaffold frames.
    Zhao Z; Liu Y; Yan H
    Nano Lett; 2011 Jul; 11(7):2997-3002. PubMed ID: 21682348
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DNA Origami as Scaffolds for Self-Assembly of Lipids and Proteins.
    Dong Y; Mao Y
    Chembiochem; 2019 Oct; 20(19):2422-2431. PubMed ID: 30963675
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Revealing thermodynamics of DNA origami folding via affine transformations.
    Majikes JM; Patrone PN; Schiffels D; Zwolak M; Kearsley AJ; Forry SP; Liddle JA
    Nucleic Acids Res; 2020 Jun; 48(10):5268-5280. PubMed ID: 32347943
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability.
    Kielar C; Xin Y; Xu X; Zhu S; Gorin N; Grundmeier G; Möser C; Smith DM; Keller A
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315177
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetically Encoded DNA Origami for Gene Therapy In Vivo.
    Wu X; Yang C; Wang H; Lu X; Shang Y; Liu Q; Fan J; Liu J; Ding B
    J Am Chem Soc; 2023 Apr; 145(16):9343-9353. PubMed ID: 37070733
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Optical Voltage Sensing Using DNA Origami.
    Hemmig EA; Fitzgerald C; Maffeo C; Hecker L; Ochmann SE; Aksimentiev A; Tinnefeld P; Keyser UF
    Nano Lett; 2018 Mar; 18(3):1962-1971. PubMed ID: 29430924
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.
    Brassat K; Ramakrishnan S; Bürger J; Hanke M; Doostdar M; Lindner JKN; Grundmeier G; Keller A
    Langmuir; 2018 Dec; 34(49):14757-14765. PubMed ID: 29754490
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functionalization of Cellular Membranes with DNA Nanotechnology.
    Schoenit A; Cavalcanti-Adam EA; Göpfrich K
    Trends Biotechnol; 2021 Nov; 39(11):1208-1220. PubMed ID: 33722382
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stability of DNA origami nanoarrays in cell lysate.
    Mei Q; Wei X; Su F; Liu Y; Youngbull C; Johnson R; Lindsay S; Yan H; Meldrum D
    Nano Lett; 2011 Apr; 11(4):1477-82. PubMed ID: 21366226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.
    Wan N; Hong Z; Wang H; Fu X; Zhang Z; Li C; Xia H; Fang Y; Li M; Zhan Y; Yang X
    Small; 2017 Nov; 13(41):. PubMed ID: 28902974
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 78. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Site-Specific Synthesis of Silica Nanostructures on DNA Origami Templates.
    Shang Y; Li N; Liu S; Wang L; Wang ZG; Zhang Z; Ding B
    Adv Mater; 2020 May; 32(21):e2000294. PubMed ID: 32301202
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.