BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34958347)

  • 1. Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics system.
    Weksler S; Rozenstein O; Ben Dor E
    J Exp Bot; 2022 Sep; 73(15):5294-5305. PubMed ID: 34958347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Potassium Deficiency and Momentary Transpiration Rate Estimation at Early Growth Stages Using Proximal Hyperspectral Imaging and Extreme Gradient Boosting.
    Weksler S; Rozenstein O; Haish N; Moshelion M; Wallach R; Ben-Dor E
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenomic and Physiological Analysis of Salinity Effects on Lettuce.
    Adhikari ND; Simko I; Mou B
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31694293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce (
    Kumar P; Eriksen RL; Simko I; Mou B
    Front Genet; 2021; 12():634554. PubMed ID: 33679897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vegetation Indices for Early Grey Mould Detection in Lettuce Grown under Different Lighting Conditions.
    Kupčinskienė A; Brazaitytė A; Rasiukevičiūtė N; Valiuškaitė A; Morkeliūnė A; Vaštakaitė-Kairienė V
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TSWIFT: Tower Spectrometer on Wheels for Investigating Frequent Timeseries for high-throughput phenotyping of vegetation physiology.
    Wong CYS; Jones T; McHugh DP; Gilbert ME; Gepts P; Palkovic A; Buckley TN; Magney TS
    Plant Methods; 2023 Mar; 19(1):29. PubMed ID: 36978119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining the variability of the photochemical reflectance index (PRI) at the canopy-scale: Disentangling the effects of phenological and physiological changes.
    Merlier E; Hmimina G; Dufrêne E; Soudani K
    J Photochem Photobiol B; 2015 Oct; 151():161-71. PubMed ID: 26295453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoresponse to different lighting strategies during red leaf lettuce growth.
    Samuolienė G; Viršilė A; Haimi P; Miliauskienė J
    J Photochem Photobiol B; 2020 Jan; 202():111726. PubMed ID: 31816516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods.
    Moran JA; Mitchell AK; Goodmanson G; Stockburger KA
    Tree Physiol; 2000 Oct; 20(16):1113-20. PubMed ID: 11269963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response.
    Banerjee BP; Joshi S; Thoday-Kennedy E; Pasam RK; Tibbits J; Hayden M; Spangenberg G; Kant S
    J Exp Bot; 2020 Jul; 71(15):4604-4615. PubMed ID: 32185382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels.
    Shrestha S; Brueck H; Asch F
    J Photochem Photobiol B; 2012 Aug; 113():7-13. PubMed ID: 22617629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect Analysis of Hydrogen Peroxide Using Hyperspectral Reflectance in Sorghum [
    Song KE; Hong SS; Hwang HR; Hong SH; Shim SI
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3.
    Gray SB; Dermody O; DeLucia EH
    J Exp Bot; 2010 Oct; 61(15):4413-22. PubMed ID: 20696654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles.
    Kalisz A; Kornaś A; Skoczowski A; Oliwa J; Jurkow R; Gil J; Sękara A; Sałata A; Caruso G
    BMC Plant Biol; 2023 Jun; 23(1):329. PubMed ID: 37340375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating yields of salt- and water-stressed forages with remote sensing in the visible and near infrared.
    Poss JA; Russell WB; Grieve CM
    J Environ Qual; 2006; 35(4):1060-71. PubMed ID: 16738391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Estimation of Water Stress in Choy Sum (
    Al Aasmi A; Alordzinu KE; Li J; Lan Y; Appiah SA; Qiao S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of thermal imaging and the photochemical reflectance index (PRI) to detect wheat response to elevated CO
    Mulero G; Jiang D; Bonfil DJ; Helman D
    Plant Cell Environ; 2023 Jan; 46(1):76-92. PubMed ID: 36289576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating leaf photosynthesis of C
    Tsujimoto K; Hikosaka K
    Photosynth Res; 2021 May; 148(1-2):33-46. PubMed ID: 33909221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform.
    Mertens S; Verbraeken L; Sprenger H; De Meyer S; Demuynck K; Cannoot B; Merchie J; De Block J; Vogel JT; Bruce W; Nelissen H; Maere S; Inzé D; Wuyts N
    Plant Methods; 2023 Nov; 19(1):132. PubMed ID: 37996870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images.
    Taha MF; Mao H; Wang Y; ElManawy AI; Elmasry G; Wu L; Memon MS; Niu Z; Huang T; Qiu Z
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.