BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34958433)

  • 1. Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production.
    Ge F; Li X; Ge Q; Zhu D; Li W; Shi F; Chen H
    AMB Express; 2021 Dec; 11(1):179. PubMed ID: 34958433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid].
    Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway engineering in
    Zhang B; Ye BC
    3 Biotech; 2018 May; 8(5):247. PubMed ID: 29744279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose.
    Yu X; Jin H; Liu W; Wang Q; Qi Q
    Microb Cell Fact; 2015 Nov; 14():183. PubMed ID: 26577071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid.
    Zhang C; Li Y; Zhu F; Li Z; Lu N; Li Y; Xu Q; Chen N
    Bioresour Technol; 2020 Dec; 318():124064. PubMed ID: 32905949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum.
    Yu X; Jin H; Cheng X; Wang Q; Qi Q
    Microbiol Res; 2016 Nov; 192():292-299. PubMed ID: 27664748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH; Lim HG; Park S; Seo SW; Jung GY
    Metab Eng; 2017 Sep; 43(Pt A):1-8. PubMed ID: 28739388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review.
    Yi YC; Shih IT; Yu TH; Lee YJ; Ng IS
    Bioresour Bioprocess; 2021 Oct; 8(1):100. PubMed ID: 38650260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield.
    Yang P; Liu W; Cheng X; Wang J; Wang Q; Qi Q
    Appl Environ Microbiol; 2016 May; 82(9):2709-2717. PubMed ID: 26921424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-modular metabolic engineering of heme synthesis in
    Yang Q; Sun X; Wang H; Chen T; Wang Z
    Synth Syst Biotechnol; 2024 Jun; 9(2):285-293. PubMed ID: 38496319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production.
    Yi YC; Ng IS
    Bioresour Bioprocess; 2021 Feb; 8(1):13. PubMed ID: 38650245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway--metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum.
    Kind S; Becker J; Wittmann C
    Metab Eng; 2013 Jan; 15():184-95. PubMed ID: 22871505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of tricarboxylic acid cycle in Corynebacterium glutamicum with a genome-scale metabolic network model for trans-4-hydroxyproline production.
    Zhang Y; Zhang Y; Shang X; Wang B; Hu Q; Liu S; Wen T
    Biotechnol Bioeng; 2019 Jan; 116(1):99-109. PubMed ID: 30102770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered
    Chen J; Wang Y; Guo X; Rao D; Zhou W; Zheng P; Sun J; Ma Y
    Biotechnol Biofuels; 2020; 13():41. PubMed ID: 32175008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli.
    Cui Z; Jiang Z; Zhang J; Zheng H; Jiang X; Gong K; Liang Q; Wang Q; Qi Q
    J Agric Food Chem; 2019 Feb; 67(5):1478-1483. PubMed ID: 30644739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Deficiency of succinic dehydrogenase or succinyl-coA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli].
    Pu W; Chen J; Sun C; Chen N; Sun J; Zheng P; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1494-503. PubMed ID: 24432664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.