These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34958440)

  • 1. Growth, respiratory activity and chlorpyrifos biodegradation in cultures of Azotobacter vinelandii ATCC 12837.
    Conde-Avila V; Peña C; Pérez-Armendáriz B; Loera O; Martínez Valenzuela C; Leyva Morales JB; Jesús Bastidas Bastidas P; Salgado-Lugo H; Ortega Martínez LD
    AMB Express; 2021 Dec; 11(1):177. PubMed ID: 34958440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen uptake rate in alginate producer (algU+) and nonproducer (algU-) strains of Azotobacter vinelandii under nitrogen-fixation conditions.
    Castillo T; López I; Flores C; Segura D; García A; Galindo E; Peña C
    J Appl Microbiol; 2018 Jul; 125(1):181-189. PubMed ID: 29573518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-beta-hydroxybutyrate (PHB) synthesis.
    Mejía MA; Segura D; Espín G; Galindo E; Peña C
    J Appl Microbiol; 2010 Jan; 108(1):55-61. PubMed ID: 19583796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions.
    Lozano E; Galindo E; Peña CF
    Microb Cell Fact; 2011 Feb; 10():13. PubMed ID: 21352581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Azotobacter vinelandii with different 3HV fraction in shake flasks and bioreactor.
    Urtuvia V; Maturana N; Peña C; Díaz-Barrera A
    Bioprocess Biosyst Eng; 2020 Aug; 43(8):1469-1478. PubMed ID: 32266468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Isolation and degrading characters of chlorpyrifos degrading bacteria XZ-3].
    Qian B; Zhu LS; Xie H; Wang J; Liu W; Xu QF; Song Y; Xu RJ
    Huan Jing Ke Xue; 2007 Dec; 28(12):2827-32. PubMed ID: 18290445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of amino acids by Azotobacter vinelandii and Azotobacter chroococcum with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions.
    Revillas JJ; Rodelas B; Pozo C; Martínez-Toledo MV; López JG
    Amino Acids; 2005 Jun; 28(4):421-5. PubMed ID: 15731884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular weight and guluronic/mannuronic ratio of alginate produced by Azotobacter vinelandii at two bioreactor scales under diazotrophic conditions.
    Díaz-Barrera A; Sanchez-Rosales F; Padilla-Córdova C; Andler R; Peña C
    Bioprocess Biosyst Eng; 2021 Jun; 44(6):1275-1287. PubMed ID: 33635396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux analysis and the NAD(P)H/NAD(P)
    García A; Ferrer P; Albiol J; Castillo T; Segura D; Peña C
    Microb Cell Fact; 2018 Jan; 17(1):10. PubMed ID: 29357933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2-dependent mixotrophic growth of N2-fixing Azotobacter vinelandii.
    Wong TY; Maier RJ
    J Bacteriol; 1985 Aug; 163(2):528-33. PubMed ID: 4019408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of transformation competence in Azotobacter vinelandii iron-limited cultures.
    Page WJ; von Tigerstrom M
    Can J Microbiol; 1978 Dec; 24(12):1590-4. PubMed ID: 747819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of respiratory activity and carbon usage of a mutant of Azotobacter vinelandii impaired in poly-β-hydroxybutyrate synthesis.
    Jiménez L; Castillo T; Flores C; Segura D; Galindo E; Peña C
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1167-74. PubMed ID: 27154760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetramethyl-p-phenylenediamine oxidase reaction in Azotobacter vinelandii.
    Jurtshuk P; Marcucci OM; McQuitty DN
    Appl Microbiol; 1975 Dec; 30(6):951-8. PubMed ID: 174491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils.
    Singh BK; Walker A; Morgan JA; Wright DJ
    Appl Environ Microbiol; 2004 Aug; 70(8):4855-63. PubMed ID: 15294824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii.
    Kuhla J; Oelze J
    J Bacteriol; 1988 Nov; 170(11):5325-9. PubMed ID: 3182730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(3-hydroxybutyrate) accumulation by Azotobacter vinelandii under different oxygen transfer strategies.
    Díaz-Barrera A; Urtuvia V; Padilla-Córdova C; Peña C
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):13-19. PubMed ID: 30357504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures.
    Díaz-Barrera A; Soto E; Altamirano C
    J Ind Microbiol Biotechnol; 2012 Apr; 39(4):613-21. PubMed ID: 22072437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving glucose and xylose assimilation in Azotobacter vinelandii by adaptive laboratory evolution.
    Millán C; Peña C; Flores C; Espín G; Galindo E; Castillo T
    World J Microbiol Biotechnol; 2020 Mar; 36(3):46. PubMed ID: 32140791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome and ubiquinone patterns during growth of Azotobacter vinelandii.
    Knowles CJ; Redfearn ER
    J Bacteriol; 1969 Feb; 97(2):756-60. PubMed ID: 5773028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogenase activity and regeneration of the cellular ATP pool in Azotobacter vinelandii adapted to different oxygen concentrations.
    Linkerhägner K; Oelze J
    J Bacteriol; 1997 Feb; 179(4):1362-7. PubMed ID: 9023223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.