These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34958518)
1. Age-dependent cerebrospinal fluid-tissue water exchange detected by magnetization transfer indirect spin labeling MRI. Li AM; Chen L; Liu H; Li Y; Duan W; Xu J Magn Reson Med; 2022 May; 87(5):2287-2298. PubMed ID: 34958518 [TBL] [Abstract][Full Text] [Related]
2. The effect of aquaporin-4 inhibition on cerebrospinal fluid-tissue water exchange in mouse brain detected by magnetization transfer indirect spin labeling MRI. Chen Z; Lai JHC; Xu J; Zhang H; Huang J; Chan KWY NMR Biomed; 2024 Jul; 37(7):e5093. PubMed ID: 38163739 [TBL] [Abstract][Full Text] [Related]
3. Cerebrospinal fluid-tissue exchange revealed by phase alternate labeling with null recovery MRI. Li AM; Xu J Magn Reson Med; 2022 Mar; 87(3):1207-1217. PubMed ID: 34799860 [TBL] [Abstract][Full Text] [Related]
4. Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans. Petitclerc L; Hirschler L; Wells JA; Thomas DL; van Walderveen MAA; van Buchem MA; van Osch MJP Neuroimage; 2021 Dec; 245():118755. PubMed ID: 34826596 [TBL] [Abstract][Full Text] [Related]
5. Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study. Ohene Y; Harrison IF; Nahavandi P; Ismail O; Bird EV; Ottersen OP; Nagelhus EA; Thomas DL; Lythgoe MF; Wells JA Neuroimage; 2019 Mar; 188():515-523. PubMed ID: 30557661 [TBL] [Abstract][Full Text] [Related]
6. Age-related Decline of Intrinsic Cerebrospinal Fluid Outflow in Healthy Humans Detected with Non-contrast Spin-labeling MR Imaging. Malis V; Bae WC; Yamamoto A; McEvoy LK; McDonald MA; Miyazaki M Magn Reson Med Sci; 2024 Jan; 23(1):66-79. PubMed ID: 36529500 [TBL] [Abstract][Full Text] [Related]
7. Visualization of cerebrospinal fluid dynamics using multi-spin echo acquisition cine imaging (MUSACI). Wada T; Tokunaga C; Togao O; Funatsu R; Yamashita Y; Kobayashi K; Yoneyama M; Honda H Magn Reson Med; 2019 Jan; 81(1):331-341. PubMed ID: 30194785 [TBL] [Abstract][Full Text] [Related]
8. Separating fast and slow exchange transfer and magnetization transfer using off-resonance variable-delay multiple-pulse (VDMP) MRI. Chen L; Xu X; Zeng H; Chan KWY; Yadav N; Cai S; Schunke KJ; Faraday N; van Zijl PCM; Xu J Magn Reson Med; 2018 Oct; 80(4):1568-1576. PubMed ID: 29405374 [TBL] [Abstract][Full Text] [Related]
9. Systematic Evaluation of Amide Proton Chemical Exchange Saturation Transfer at 3 T: Effects of Protein Concentration, pH, and Acquisition Parameters. Schmidt H; Schwenzer NF; Gatidis S; Küstner T; Nikolaou K; Schick F; Martirosian P Invest Radiol; 2016 Oct; 51(10):635-46. PubMed ID: 27272542 [TBL] [Abstract][Full Text] [Related]
10. Relayed nuclear Overhauser enhancement imaging with magnetization transfer contrast suppression at 3 T. Huang J; Han X; Chen L; Xu X; Xu J; Chan KWY Magn Reson Med; 2021 Jan; 85(1):254-267. PubMed ID: 32738080 [TBL] [Abstract][Full Text] [Related]
11. Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. Xu J; Yadav NN; Bar-Shir A; Jones CK; Chan KW; Zhang J; Walczak P; McMahon MT; van Zijl PC Magn Reson Med; 2014 May; 71(5):1798-812. PubMed ID: 23813483 [TBL] [Abstract][Full Text] [Related]
12. Combining chemical exchange saturation transfer and Hoefemann M; Döring A; Fichtner ND; Kreis R Magn Reson Med; 2021 Apr; 85(4):1766-1782. PubMed ID: 33151011 [TBL] [Abstract][Full Text] [Related]
14. Pilot study utilizing MRI 3D TGSE PASL (arterial spin labeling) differentiating clearance rates of labeled protons in the CNS of patients with early Alzheimer disease from normal subjects. Joseph CR; Benhatzel CM; Stern LJ; Hopper OM; Lockwood MD MAGMA; 2020 Aug; 33(4):559-568. PubMed ID: 31897905 [TBL] [Abstract][Full Text] [Related]
15. Non-contrast enhanced molecular characterization of C6 rat glioma tumor at 7 T. Salehi Ravesh M; Huhndorf M; Moussavi A Magn Reson Imaging; 2019 Sep; 61():175-186. PubMed ID: 31150813 [TBL] [Abstract][Full Text] [Related]
16. Relation between tag position and degree of visualized cerebrospinal fluid reflux into the lateral ventricles in time-spatial labeling inversion pulse magnetic resonance imaging at the foramen of Monro. Middlebrooks EH; Bennett JA; Old Crow A Fluids Barriers CNS; 2015 Jun; 12():14. PubMed ID: 26093635 [TBL] [Abstract][Full Text] [Related]
17. Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. van Zijl PCM; Lam WW; Xu J; Knutsson L; Stanisz GJ Neuroimage; 2018 Mar; 168():222-241. PubMed ID: 28435103 [TBL] [Abstract][Full Text] [Related]
18. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI. Zhao MY; Václavů L; Petersen ET; Biemond BJ; Sokolska MJ; Suzuki Y; Thomas DL; Nederveen AJ; Chappell MA Magn Reson Med; 2020 Feb; 83(2):731-748. PubMed ID: 31513311 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the refocusing flip angle in the characterization of cerebrospinal fluid dynamics using multi-spin echo acquisition cine imaging (MUSACI). Wada T; Tokunaga C; Togao O; Yoneyama M; Funatsu R; Yamashita Y; Kobayashi K; Kato T Magn Reson Imaging; 2021 Feb; 76():87-95. PubMed ID: 33232768 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological MRI with Simultaneous Measurement of Cerebral Perfusion and Blood-Cerebrospinal Fluid Barrier Function using Interleaved Echo-Time Arterial Spin Labelling. Perera C; Harrison IF; Lythgoe MF; Thomas DL; Wells JA Neuroimage; 2021 Sep; 238():118270. PubMed ID: 34144160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]