These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34958616)

  • 1. Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester.
    Misch J; Sprigle S
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1393-1403. PubMed ID: 34958616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters.
    Sprigle S; Huang M; Misch J
    Assist Technol; 2022 Jan; 34(1):91-103. PubMed ID: 31891276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Wheels, Casters and Forks on Vibration Attenuation and Propulsion Cost of Manual Wheelchairs.
    Misch JP; Liu Y; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2661-2670. PubMed ID: 36083953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of rolling resistance in manual wheelchair wheels and casters using drum-based testing.
    Ott J; Wilson-Jene H; Koontz A; Pearlman J
    Disabil Rehabil Assist Technol; 2022 Aug; 17(6):719-730. PubMed ID: 32924657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers.
    Sprigle S; Huang M
    J Rehabil Assist Technol Eng; 2020; 7():2055668320907819. PubMed ID: 32292593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheelchair caster shimmy and turning resistance.
    Kauzlarich JJ; Bruning T; Thacker JG
    J Rehabil Res Dev; 1984 Jul; 21(2):15-29. PubMed ID: 6530672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs.
    Zepeda R; Chan F; Sawatzky B
    J Rehabil Res Dev; 2016; 53(6):893-900. PubMed ID: 28475204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.
    Lin JT; Huang M; Sprigle S
    J Rehabil Res Dev; 2015; 52(7):763-74. PubMed ID: 26745011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual Wheelchair Configuration in Unilateral Upper- and Lower-Extremity Propulsion: A Randomized Crossover Study to Assess Effects of Rear Wheel Axle Position and Frame Type.
    Tefertiller C; Jones J; Sevigny M; Dahlin M
    Arch Phys Med Rehabil; 2023 Aug; 104(8):1188-1194. PubMed ID: 37024004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propulsion Cost Changes of Ultra-Lightweight Manual Wheelchairs After One Year of Simulated Use.
    Misch J; Sprigle S
    ASME Open J Eng; 2022; 1(1):. PubMed ID: 38529342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of wheelchair tire rolling resistance using dynamometer-based coast-down tests.
    Kwarciak AM; Yarossi M; Ramanujam A; Dyson-Hudson TA; Sisto SA
    J Rehabil Res Dev; 2009; 46(7):931-8. PubMed ID: 20104415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of operator and wheelchair factors on wheelchair propulsion effort.
    Lin JT; Sprigle S
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):328-335. PubMed ID: 30810404
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessment of wheelchair drag resistance using a coasting deceleration technique.
    Hoffman MD; Millet GY; Hoch AZ; Candau RB
    Am J Phys Med Rehabil; 2003 Nov; 82(11):880-9; quiz 890-2. PubMed ID: 14566157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces.
    Chan FHN; Eshraghi M; Alhazmi MA; Sawatzky BJ
    Assist Technol; 2018; 30(4):176-182. PubMed ID: 28590160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.
    Liles H; Huang M; Caspall J; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):983-91. PubMed ID: 25420269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.