These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34959087)

  • 21. An integrated and sustainable hydrometallurgical process for enrichment of precious metals and selective separation of copper, zinc, and lead from a roasted sand.
    Liu G; Pan D; Wu Y; Yuan H; Yu L; Wang W
    Waste Manag; 2021 Aug; 132():133-141. PubMed ID: 34332369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.
    Pickles CA
    J Hazard Mater; 2010 Jul; 179(1-3):309-17. PubMed ID: 20356673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust.
    Chen D; Guo H; Li P; Wu F; Lv Y; Yan B; Zhao W; Su Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching.
    Al-Harahsheh M; Kingman S; Al-Makhadmah L; Hamilton IE
    J Hazard Mater; 2014 Jun; 274():87-97. PubMed ID: 24769846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.
    Yin NH; Sivry Y; Guyot F; Lens PN; van Hullebusch ED
    J Environ Manage; 2016 Sep; 180():310-23. PubMed ID: 27240207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching properties of electric arc furnace dust prior/following alkaline extraction.
    Orescanin V; Mikelić L; Sofilić T; Rastovcan-Mioc A; Uzarević K; Medunić G; Elez L; Lulić S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):323-9. PubMed ID: 17365298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust.
    Ye L; Peng Z; Ye Q; Wang L; Augustine R; Perez M; Liu Y; Liu M; Tang H; Rao M; Li G; Jiang T
    Waste Manag; 2021 Nov; 135():389-396. PubMed ID: 34610538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust.
    Pickles CA
    J Hazard Mater; 2008 Jan; 150(2):265-78. PubMed ID: 17540503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.
    Prabaharan G; Barik SP; Kumar B
    Waste Manag; 2016 Jun; 52():302-8. PubMed ID: 27084106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic analysis of caustic-roasting of electric arc furnace dust.
    Ahmad S; Sajal WR; Gulshan F; Hasan M; Rhamdhani MA
    Heliyon; 2022 Oct; 8(10):e11031. PubMed ID: 36276738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching.
    Gonzalez-Montero P; Iglesias-Gonzalez N; Romero R; Mazuelos A; Carranza F
    Environ Technol; 2020 Apr; 41(9):1093-1100. PubMed ID: 30192727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of Zinc from Metallurgical Slag and Dust by Ammonium Acetate Using Response Surface Methodology.
    Zheng X; Li J; Ma A; Liu B
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
    Suetens T; Guo M; Van Acker K; Blanpain B
    J Hazard Mater; 2015 Apr; 287():180-7. PubMed ID: 25646901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrometallurgical recovery of zinc from ashes of automobile tire wastes.
    Kinoshita T; Yamaguchi K; Akita S; Nii S; Kawaizumi F; Takahashi K
    Chemosphere; 2005 May; 59(8):1105-11. PubMed ID: 15833484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust.
    Fernández-Olmo I; Lasa C; Irabien A
    J Hazard Mater; 2007 Jun; 144(3):720-4. PubMed ID: 17324503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable mechanism of hazardous jarosite transformation into recyclable hematite in the leaching solution of secondary zinc oxide powder.
    Xing Y; Wei C; Deng Z; Li X; Li M
    Sci Rep; 2024 Oct; 14(1):24490. PubMed ID: 39424716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.
    Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN
    J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.
    Ruiz O; Clemente C; Alonso M; Alguacil FJ
    J Hazard Mater; 2007 Mar; 141(1):33-6. PubMed ID: 16876937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.
    Shen L; Qiao Y; Guo Y; Tan J
    J Hazard Mater; 2010 May; 177(1-3):495-500. PubMed ID: 20064689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the enrichment-purification process and electrochemical performance of kish graphite in dust from blast furnace tapping yard.
    Rong T; Yuan Y; Yang H; Yu H; Zuo H; Wang J; Xue Q
    Waste Manag; 2024 Mar; 175():121-132. PubMed ID: 38194797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.