These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34959096)
41. Synthesis and characterization of fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: a novel bilayered surface structure. Xie X; Tan H; Li J; Zhong Y J Biomed Mater Res A; 2008 Jan; 84(1):30-43. PubMed ID: 17600322 [TBL] [Abstract][Full Text] [Related]
42. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour. Unger F; Wittmar M; Morell F; Kissel T Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641 [TBL] [Abstract][Full Text] [Related]
43. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
44. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone). Bramfeldt H; Sarazin P; Vermette P J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493 [TBL] [Abstract][Full Text] [Related]
45. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation of elastic properties during hydrolytic degradation of lactide and ε-caprolactone polymers. Morokov ES; Demina VA; Sedush NG; Kalinin KT; Khramtsova EA; Dmitryakov PV; Bakirov AV; Grigoriev TE; Levin VM; Chvalun SN Acta Biomater; 2020 Jun; 109():61-72. PubMed ID: 32294555 [TBL] [Abstract][Full Text] [Related]
46. Effect of ganciclovir on the hydrolytic degradation of poly(lactide-co-glycolide) microspheres. Chen X; Ooi CP; Lim TH J Biomater Appl; 2006 Jan; 20(3):287-302. PubMed ID: 16364967 [TBL] [Abstract][Full Text] [Related]
47. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
48. Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Zong X; Ran S; Kim KS; Fang D; Hsiao BS; Chu B Biomacromolecules; 2003; 4(2):416-23. PubMed ID: 12625740 [TBL] [Abstract][Full Text] [Related]
49. Improvement and characterization of the adhesion of electrospun PLDLA nanofibers on PLDLA-based 3D object substrates for orthopedic application. Wimpenny I; Lahteenkorva K; Suokas E; Ashammakhi N; Yang Y J Biomater Sci Polym Ed; 2012; 23(14):1863-77. PubMed ID: 21943952 [TBL] [Abstract][Full Text] [Related]
50. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. Santerre JP; Labow RS; Duguay DG; Erfle D; Adams GA J Biomed Mater Res; 1994 Oct; 28(10):1187-99. PubMed ID: 7829548 [TBL] [Abstract][Full Text] [Related]
51. Comparative analysis of in vitro oxidative degradation of poly(carbonate urethanes) for biostability screening. Dempsey DK; Carranza C; Chawla CP; Gray P; Eoh JH; Cereceres S; Cosgriff-Hernandez EM J Biomed Mater Res A; 2014 Oct; 102(10):3649-65. PubMed ID: 24265203 [TBL] [Abstract][Full Text] [Related]
53. Through-thickness control of polymer bioresorption via electron beam irradiation. Cairns ML; Sykes A; Dickson GR; Orr JF; Farrar D; Dumba A; Buchanan FJ Acta Biomater; 2011 Feb; 7(2):548-57. PubMed ID: 20849986 [TBL] [Abstract][Full Text] [Related]
54. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884 [TBL] [Abstract][Full Text] [Related]
55. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Ranjbar-Mohammadi M; Bahrami SH Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898 [TBL] [Abstract][Full Text] [Related]
56. A novel biocompatible polymeric blend for applications requiring high toughness and tailored degradation rate. Heidari BS; Chen P; Ruan R; Davachi SM; Al-Salami H; De Juan Pardo E; Zheng M; Doyle B J Mater Chem B; 2021 Mar; 9(10):2532-2546. PubMed ID: 33660730 [TBL] [Abstract][Full Text] [Related]
57. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds. Henry JA; Simonet M; Pandit A; Neuenschwander P J Biomed Mater Res A; 2007 Sep; 82(3):669-79. PubMed ID: 17323319 [TBL] [Abstract][Full Text] [Related]