These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34959398)

  • 1. Drug Repurposing Using Modularity Clustering in Drug-Drug Similarity Networks Based on Drug-Gene Interactions.
    Groza V; Udrescu M; Bozdog A; Udrescu L
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering New Drug Properties in Target-Based Drug-Drug Similarity Networks.
    Udrescu L; Bogdan P; Chiş A; Sîrbu IO; Topîrceanu A; Văruţ RM; Udrescu M
    Pharmaceutics; 2020 Sep; 12(9):. PubMed ID: 32947845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Drug Repurposing Method Based on Drug-Drug Interaction Networks and Using Energy Model Layouts.
    Udrescu M; Udrescu L
    Methods Mol Biol; 2019; 1903():185-201. PubMed ID: 30547443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing.
    Udrescu L; Sbârcea L; Topîrceanu A; Iovanovici A; Kurunczi L; Bogdan P; Udrescu M
    Sci Rep; 2016 Sep; 6():32745. PubMed ID: 27599720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of potential biological targets of oxindole scaffolds via
    Tinivella A; Pinzi L; Gambacorta G; Baxendale I; Rastelli G
    F1000Res; 2022; 11():. PubMed ID: 37767081
    [No Abstract]   [Full Text] [Related]  

  • 6. Drug repurposing based on drug-drug interaction.
    Zhou B; Wang R; Wu P; Kong DX
    Chem Biol Drug Des; 2015 Feb; 85(2):137-44. PubMed ID: 24934184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Approach to Drug Repurposing with Two-Stage Prediction, Machine Learning, and Unsupervised Clustering of Gene Expression.
    Cong Y; Shintani M; Imanari F; Osada N; Endo T
    OMICS; 2022 Jun; 26(6):339-347. PubMed ID: 35666246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks.
    Nam Y; Lucas A; Yun JS; Lee SM; Park JW; Chen Z; Lee B; Ning X; Shen L; Verma A; Kim D
    J Transl Med; 2023 Jun; 21(1):415. PubMed ID: 37365631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative rare disease biomedical profile based network supporting drug repurposing or repositioning, a case study of glioblastoma.
    McGowan E; Sanjak J; Mathé EA; Zhu Q
    Orphanet J Rare Dis; 2023 Sep; 18(1):301. PubMed ID: 37749605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network predicting drug's anatomical therapeutic chemical code.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2013 May; 29(10):1317-24. PubMed ID: 23564845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema.
    Rosenberg FM; Kamali Z; Voorberg AN; Oude Munnink TH; van der Most PJ; Snieder H; Vaez A; Schuttelaar MLA
    Pharmaceutics; 2024 Mar; 16(4):. PubMed ID: 38675137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REPRODUCIBLE DRUG REPURPOSING: WHEN SIMILARITY DOES NOT SUFFICE.
    Guney E
    Pac Symp Biocomput; 2017; 22():132-143. PubMed ID: 27896969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDATC-NCPMKL: Predicting drug's Anatomical Therapeutic Chemical (ATC) codes based on network consistency projection and multiple kernel learning.
    Chen L; Xu J; Zhou Y
    Comput Biol Med; 2024 Feb; 169():107862. PubMed ID: 38150886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally repurposing drugs for breast cancer subtypes using a network-based approach.
    Firoozbakht F; Rezaeian I; Rueda L; Ngom A
    BMC Bioinformatics; 2022 Apr; 23(1):143. PubMed ID: 35443626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug repurposing for cancer treatment through global propagation with a greedy algorithm in a multilayer network.
    Cheng X; Zhao W; Zhu M; Wang B; Wang X; Yang X; Huang Y; Tan M; Li J
    Cancer Biol Med; 2021 Apr; 19(1):74-89. PubMed ID: 33893730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.
    Barneh F; Jafari M; Mirzaie M
    Brief Bioinform; 2016 Nov; 17(6):1070-1080. PubMed ID: 26490381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.