These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34960263)

  • 21. A new multi-stage combined kernel filtering approach for ECG noise removal.
    Tayel MB; Eltrass AS; Ammar AI
    J Electrocardiol; 2018; 51(2):265-275. PubMed ID: 29103622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Study on motion artifact reduction based on periodic component analysis using ECG as a case].
    Xiang K; Luo Q; Chen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):639-44. PubMed ID: 23016407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of adaptive motion-artifact reduction on QRS detection.
    Hamilton PS; Curley M; Aimi R
    Biomed Instrum Technol; 2000; 34(3):197-202. PubMed ID: 10868261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing visual seismocardiography in noisy environments with adaptive bidirectional filtering for Cardiac Health Monitoring.
    N G; Bhat CR; Tr M; Yimer TE
    BMC Med Inform Decis Mak; 2024 Oct; 24(1):282. PubMed ID: 39354526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of median filter and discrete dyadic wavelet transform for noise cancellation in electrocardiogram.
    Lin WH; Wong MY; Pu LN; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2395-8. PubMed ID: 21096585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A robust ECG denoising technique using variable frequency complex demodulation.
    Hossain MB; Bashar SK; Lazaro J; Reljin N; Noh Y; Chon KH
    Comput Methods Programs Biomed; 2021 Mar; 200():105856. PubMed ID: 33309076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research on heart rate extraction algorithm in motion state based on normalized least mean square combining ensemble empirical mode decomposition].
    Geng D; Zhao J; Wang C; Dong J; Ning Q; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):71-79. PubMed ID: 32096379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ECG denoising and feature extraction techniques - a review.
    Mir HY; Singh O
    J Med Eng Technol; 2021 Nov; 45(8):672-684. PubMed ID: 34463593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG.
    Zhang Q; Fu L; Gu L
    Comput Math Methods Med; 2019; 2019():7095137. PubMed ID: 31781289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive Noise Reduction Algorithm to Improve R Peak Detection in ECG Measured by Capacitive ECG Sensors.
    Seo M; Choi M; Lee JS; Kim SW
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals.
    Zhang Q; Zhou D; Zeng X
    Physiol Meas; 2016 Nov; 37(11):1945-1967. PubMed ID: 27681602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Correction of electrocardiogram signal baseline wander based on statistically weighted moving average filter].
    Hu X; Xiao Z; Zhang N; Han X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):51-4. PubMed ID: 22404006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ECG baseline wander correction based on mean-median filter and empirical mode decomposition.
    Xin Y; Chen Y; Hao WT
    Biomed Mater Eng; 2014; 24(1):365-71. PubMed ID: 24211918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrocardiogram Baseline Wander Suppression Based on the Combination of Morphological and Wavelet Transformation Based Filtering.
    Wan XK; Wu H; Qiao F; Li FC; Li Y; Yan YW; Wei JX
    Comput Math Methods Med; 2019; 2019():7196156. PubMed ID: 30944579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter.
    Xu L; Zhang D; Wang K; Li N; Wang X
    Comput Biol Med; 2007 May; 37(5):716-31. PubMed ID: 16930579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and Noise Removal.
    Li H; Ditzler G; Roveda J; Li A
    IEEE J Biomed Health Inform; 2024 Sep; 28(9):5081-5091. PubMed ID: 37021916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography.
    Skoric J; D'Mello Y; Plant DV
    IEEE J Transl Eng Health Med; 2024; 12():348-358. PubMed ID: 38606390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts.
    Nathan V; Akkaya I; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6560-5. PubMed ID: 26737796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG).
    Li HZ; Boulanger P
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.