These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34960479)

  • 1. WildGait: Learning Gait Representations from Raw Surveillance Streams.
    Cosma A; Radoi IE
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Gait Representations with Noisy Multi-Task Learning.
    Cosma A; Radoi E
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait Recognition with Self-Supervised Learning of Gait Features Based on Vision Transformers.
    Pinčić D; Sušanj D; Lenac K
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Self-Supervised Vision Transformers for Gait Recognition in the Wild.
    Cosma A; Catruna A; Radoi E
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
    Cai X; Han G; Song X; Wang J
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Learning Disentangled Representations for Gait Recognition.
    Zhang Z; Tran L; Liu F; Liu X
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):345-360. PubMed ID: 32750777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification.
    Albuquerque P; Verlekar TT; Correia PL; Soares LD
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Smart Surveillance System for Uncooperative Gait Recognition Using Cycle Consistent Generative Adversarial Networks (CCGANs).
    Alsaggaf WA; Mehmood I; Khairullah EF; Alhuraiji S; Sabir MFS; Alghamdi AS; Abd El-Latif AA
    Comput Intell Neurosci; 2021; 2021():3110416. PubMed ID: 34691168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks.
    Wang Y; Zhang X; Shen Y; Du B; Zhao G; Cui L; Wen H
    IEEE Trans Pattern Anal Mach Intell; 2022 Jul; 44(7):3436-3449. PubMed ID: 33502972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Parkinsonism Severity in Natural Gait Videos of Older Adults With Dementia.
    Sabo A; Mehdizadeh S; Iaboni A; Taati B
    IEEE J Biomed Health Inform; 2022 May; 26(5):2288-2298. PubMed ID: 35077373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CASIA-E: A Large Comprehensive Dataset for Gait Recognition.
    Song C; Huang Y; Wang W; Wang L
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2801-2815. PubMed ID: 35704543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Gait Recognition: A Survey.
    Sepas-Moghaddam A; Etemad A
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):264-284. PubMed ID: 35167443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Parkinsonian Gait in Older Adults with Dementia using Joint Trajectories and Gait Features from 2D Video
    Sabo A; Mehdizadeh S; Iaboni A; Taati B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5700-5703. PubMed ID: 34892415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-calibrating view-invariant gait biometrics.
    Goffredo M; Bouchrika I; Carter JN; Nixon MS
    IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):997-1008. PubMed ID: 19884085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Efficient Spatial-Temporal Gait Features with Deep Learning for Human Identification.
    Liu W; Zhang C; Ma H; Li S
    Neuroinformatics; 2018 Oct; 16(3-4):457-471. PubMed ID: 29404933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions.
    Mehdizadeh S; Nabavi H; Sabo A; Arora T; Iaboni A; Taati B
    J Neuroeng Rehabil; 2021 Sep; 18(1):139. PubMed ID: 34526074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Self-Supervised Gait Encoding Approach With Locality-Awareness for 3D Skeleton Based Person Re-Identification.
    Rao H; Wang S; Hu X; Tan M; Guo Y; Cheng J; Liu X; Hu B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6649-6666. PubMed ID: 34181534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.