These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34960510)

  • 1. Development of a Novel Methodology for Remaining Useful Life Prediction of Industrial Slurry Pumps in the Absence of Run to Failure Data.
    Khan MM; Tse PW; Trappey AJC
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction.
    Zhao C; Huang X; Li Y; Yousaf Iqbal M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A similarity based methodology for machine prognostics by using kernel two sample test.
    Cai H; Jia X; Feng J; Li W; Pahren L; Lee J
    ISA Trans; 2020 Aug; 103():112-121. PubMed ID: 32171595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.
    Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Degradation Equipment Remaining Useful Life Prediction Oriented Parallel Simulation considering Model Soft Switch.
    Ge C; Zhu Y; Di Y
    Comput Intell Neurosci; 2019; 2019():9179870. PubMed ID: 30992700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation prediction model based on a neural network with dynamic windows.
    Zhang X; Xiao L; Kang J
    Sensors (Basel); 2015 Mar; 15(3):6996-7015. PubMed ID: 25806873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration, and temperature run-to-failure dataset of ball bearing for prognostics.
    Jung W; Yun SH; Park YH
    Data Brief; 2024 Jun; 54():110403. PubMed ID: 38660230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models.
    Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remaining Useful Life Estimation of MoSi
    Irfan HM; Liao PH; Taipabu MI; Wu W
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings.
    Yan X; Xia X; Wang L; Zhang Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis.
    Hotait H; Chiementin X; Rasolofondraibe L
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Remaining Useful Life Prediction Method of a Hydraulic Pump under Unknown Degradation Model with Limited Data.
    Wu F; Tang J; Jiang Z; Sun Y; Chen Z; Guo B
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.
    Chen X
    Sci Rep; 2024 May; 14(1):10061. PubMed ID: 38698017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shapelet selection based on a genetic algorithm for remaining useful life prediction with supervised learning.
    Ahn G; Jin MK; Hwang SB; Hur S
    Heliyon; 2022 Dec; 8(12):e12111. PubMed ID: 36578413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network.
    Sun S; Peng T; Huang H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference.
    Peng C; Wu J; Wang Q; Gui W; Tang Z
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.
    Li H; Wang Z; Li Z
    PeerJ Comput Sci; 2022; 8():e1084. PubMed ID: 36091994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.