These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34960519)

  • 21. Deep Learning Derived Object Detection and Tracking Technology Based on Sensor Fusion of Millimeter-Wave Radar/Video and Its Application on Embedded Systems.
    Lin JJ; Guo JI; Shivanna VM; Chang SY
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Multimodal Fusion Autoencoder for Saliency Prediction of RGB-D Images.
    Huang K; Zhou W; Fang M
    Comput Intell Neurosci; 2021; 2021():6610997. PubMed ID: 34035801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust RGB-T Tracking via Graph Attention-Based Bilinear Pooling.
    Kang B; Liang D; Mei J; Tan X; Zhou Q; Zhang D
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9900-9911. PubMed ID: 35417355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-destructive Plant Biomass Monitoring With High Spatio-Temporal Resolution
    Buxbaum N; Lieth JH; Earles M
    Front Plant Sci; 2022; 13():758818. PubMed ID: 35498682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired.
    Long N; Wang K; Cheng R; Hu W; Yang K
    Rev Sci Instrum; 2019 Apr; 90(4):044102. PubMed ID: 31042998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion.
    Junwei Han ; Hao Chen ; Nian Liu ; Chenggang Yan ; Xuelong Li
    IEEE Trans Cybern; 2018 Nov; 48(11):3171-3183. PubMed ID: 29990092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency between RGB and Depth.
    Wang J; Liu P; Wen F
    IEEE Trans Image Process; 2022 Dec; PP():. PubMed ID: 37015523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-destructive Phenotypic Analysis of Early Stage Tree Seedling Growth Using an Automated Stereovision Imaging Method.
    Montagnoli A; Terzaghi M; Fulgaro N; Stoew B; Wipenmyr J; Ilver D; Rusu C; Scippa GS; Chiatante D
    Front Plant Sci; 2016; 7():1644. PubMed ID: 27840632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.
    Ma X; Deng X; Qi L; Jiang Y; Li H; Wang Y; Xing X
    PLoS One; 2019; 14(4):e0215676. PubMed ID: 30998770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CDNet: Complementary Depth Network for RGB-D Salient Object Detection.
    Jin WD; Xu J; Han Q; Zhang Y; Cheng MM
    IEEE Trans Image Process; 2021; 30():3376-3390. PubMed ID: 33646949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ICNet: Information Conversion Network for RGB-D Based Salient Object Detection.
    Li G; Liu Z; Ling H
    IEEE Trans Image Process; 2020 Mar; ():. PubMed ID: 32149689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Hierarchical Learning Approach for Human Action Recognition.
    Lemieux N; Noumeir R
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPADnet: deep RGB-SPAD sensor fusion assisted by monocular depth estimation.
    Sun Z; Lindell DB; Solgaard O; Wetzstein G
    Opt Express; 2020 May; 28(10):14948-14962. PubMed ID: 32403527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Screening to Examine the Dynamic of Stay-Green by an Imaging System.
    Padilla-Chacón D; Peña-Valdivia CB
    Methods Mol Biol; 2022; 2539():3-9. PubMed ID: 35895190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning-based detection of seedling development.
    Samiei S; Rasti P; Ly Vu J; Buitink J; Rousseau D
    Plant Methods; 2020; 16():103. PubMed ID: 32742300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RGB-D scene analysis in the NICU.
    Souley Dosso Y; Greenwood K; Harrold J; Green JR
    Comput Biol Med; 2021 Nov; 138():104873. PubMed ID: 34600329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation.
    Laga H; Jospin LV; Boussaid F; Bennamoun M
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1738-1764. PubMed ID: 33079659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Body and Hand-Object ROI-Based Behavior Recognition Using Deep Learning.
    Byeon YH; Kim D; Lee J; Kwak KC
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RGB-D Data-Based Action Recognition: A Review.
    Shaikh MB; Chai D
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.