These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 34960555)

  • 1. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers.
    Rahimzadeh M; Samadi H; Mohammadi NS
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of cantilever piezoelectric harvester to triangular shape with material reduction using finite element analysis.
    Săvescu C; Comeagă D; Stoicescu A
    Heliyon; 2024 Jul; 10(13):e33209. PubMed ID: 39040420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester.
    Kang JG; Kim H; Shin S; Kim BS
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multi-Mode Broadband Vibration Energy Harvester Composed of Symmetrically Distributed U-Shaped Cantilever Beams.
    Huang X; Zhang C; Dai K
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33669395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
    Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of a Symmetric Five-Bar Displacement Amplification Compliant Mechanism for Energy Harvesting.
    Elsisy MM; Arafa MH; Saleh CA; Anis YH
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BaHf
    Brault D; Boy P; Levassort F; Poulin-Vittrant G; Bantignies C; Hoang T; Bavencoffe M
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated and measured piezoelectric energy harvesting of dynamic load in tires.
    Staaf H; Matsson S; Sepheri S; Köhler E; Daoud K; Ahrentorp F; Jonasson C; Folkow P; Ryynänen L; Penttila M; Rusu C
    Heliyon; 2024 Apr; 10(7):e29043. PubMed ID: 38601550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings.
    Elvira-Hernández EA; Uscanga-González LA; de León A; López-Huerta F; Herrera-May AL
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs.
    Elgamal MA; Elgamal H; Kouritem SA
    Sci Rep; 2024 May; 14(1):11401. PubMed ID: 38762520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation.
    Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric Sensors as Energy Harvesters for Ultra Low-Power IoT Applications.
    Rigo F; Migliorini M; Pozzebon A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Piezoelectric Footwear Energy Harvesters: Principles, Methods, and Applications.
    Zhao B; Qian F; Hatfield A; Zuo L; Xu TB
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of seaweed-inspired piezoelectric plates for energy harvesting from oscillatory cross flow.
    Zhu Q; Xiao Q
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38663427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric Transducers: Complete Electromechanical Model with Parameter Extraction.
    Isaf ML; Rincón-Mora GA
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data relating to mems piezoelectric micro power harvester physical parameter optimization, for extremely low frequency and low vibration level applications.
    Alrashdan MHS
    Data Brief; 2020 Dec; 33():106571. PubMed ID: 33299913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezoelectric BioMEMS Cantilever for Measurement of Muscle Contraction and for Actuation of Mechanosensitive Cells.
    Coln EA; Colon A; Long CJ; Sriram NN; Esch M; Prot JM; Elbrecht DH; Wang Y; Jackson M; Shuler ML; Hickman JJ
    MRS Commun; 2019 Dec; 9(4):1186-1192. PubMed ID: 33777497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers.
    Zuo L; Cui W
    J Vib Acoust; 2013 Oct; 135(5):510181-510189. PubMed ID: 23918165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-Driven Materials Informatics for Novel Piezoelectric Janus-Type Nanomaterials Discovery.
    Hwang W; Victor Oh SH; Shin J; Soon A; Yoo SH; Jang W
    J Phys Chem Lett; 2024 Jun; 15(24):6451-6457. PubMed ID: 38869084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.