These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34960845)

  • 21. A Review on the Coalescence of Confined Drops with a Focus on Scaling Laws for the Growth of the Liquid Bridge.
    Ryu S; Zhang H; Anuta UJ
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cold-induced spreading of water drops on hydrophobic surfaces.
    Tavakoli F; Kavehpour HP
    Langmuir; 2015 Feb; 31(7):2120-6. PubMed ID: 25631237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Head-On Collision of Dissimilar Viscosity Drops.
    Deka H; Biswas G; Bora BJ
    Langmuir; 2023 Jun; 39(23):8130-8140. PubMed ID: 37236913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercooled water drops impacting superhydrophobic textures.
    Maitra T; Antonini C; Tiwari MK; Mularczyk A; Imeri Z; Schoch P; Poulikakos D
    Langmuir; 2014 Sep; 30(36):10855-61. PubMed ID: 25157476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drop Bouncing Dynamics on Ultrathin Films.
    He Z; Tran H; Pack MY
    Langmuir; 2021 Aug; 37(33):10135-10142. PubMed ID: 34379973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting.
    Shiri S; Murrizi A; Bird JC
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30715065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impingement of binary nanodroplets on rough surfaces: a molecular dynamics study.
    Xue Y; Wang H; Huang S; Bie X; Wang G; Fang M
    Sci Rep; 2024 Aug; 14(1):19030. PubMed ID: 39152235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directional motion of impacting drops on dual-textured surfaces.
    Vaikuntanathan V; Sivakumar D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036315. PubMed ID: 23031021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat exchange between a bouncing drop and a superhydrophobic substrate.
    Shiri S; Bird JC
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6930-6935. PubMed ID: 28630306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet Asymmetric Bouncing on Inclined Superhydrophobic Surfaces.
    Wang H; Liu C; Zhan H; Liu Y
    ACS Omega; 2019 Jul; 4(7):12238-12243. PubMed ID: 31460339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why Drops Bounce on Smooth Surfaces.
    Tadmor R; Yadav SB; Gulec S; Leh A; Dang L; N'guessan HE; Das R; Turmine M; Tadmor M
    Langmuir; 2018 Apr; 34(15):4695-4700. PubMed ID: 29510056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid drops impacting superamphiphobic coatings.
    Deng X; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Langmuir; 2013 Jun; 29(25):7847-56. PubMed ID: 23697383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.
    Song M; Ju J; Luo S; Han Y; Dong Z; Wang Y; Gu Z; Zhang L; Hao R; Jiang L
    Sci Adv; 2017 Mar; 3(3):e1602188. PubMed ID: 28275735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency.
    Graeber G; Martin Kieliger OB; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43275-43281. PubMed ID: 30452216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review.
    Sneha Ravi A; Dalvi S
    ACS Omega; 2024 Mar; 9(11):12307-12330. PubMed ID: 38524492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.