These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34960845)
41. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature. Mohammadi M; Tembely M; Dolatabadi A Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630 [TBL] [Abstract][Full Text] [Related]
42. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. Wang Y; Zhao Y; Sun L; Mehrizi AA; Lin S; Guo J; Chen L Langmuir; 2022 Mar; 38(12):3860-3867. PubMed ID: 35293214 [TBL] [Abstract][Full Text] [Related]
43. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Chen L; Bonaccurso E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736 [TBL] [Abstract][Full Text] [Related]
45. Evolution and Shape of Two-Dimensional Stokesian Drops under the Action of Surface Tension and Electric Field: Linear and Nonlinear Theory and Experiment. Granda R; Plog J; Li G; Yurkiv V; Mashayek F; Yarin AL Langmuir; 2021 Oct; 37(39):11429-11446. PubMed ID: 34559540 [TBL] [Abstract][Full Text] [Related]
46. Impact of Viscous Droplets on Superamphiphobic Surfaces. Zhao B; Wang X; Zhang K; Chen L; Deng X Langmuir; 2017 Jan; 33(1):144-151. PubMed ID: 27966980 [TBL] [Abstract][Full Text] [Related]
47. Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Aboud DGK; Kietzig AM Langmuir; 2021 Apr; 37(15):4678-4689. PubMed ID: 33797264 [TBL] [Abstract][Full Text] [Related]
48. Bouncing of an ellipsoidal drop on a superhydrophobic surface. Yun S Sci Rep; 2017 Dec; 7(1):17699. PubMed ID: 29255271 [TBL] [Abstract][Full Text] [Related]
49. Drop impact dynamics on slippery liquid-infused porous surfaces: influence of oil thickness. Muschi M; Brudieu B; Teisseire J; Sauret A Soft Matter; 2018 Feb; 14(7):1100-1107. PubMed ID: 29333557 [TBL] [Abstract][Full Text] [Related]
51. Drop impact dynamics on oil-infused nanostructured surfaces. Lee C; Kim H; Nam Y Langmuir; 2014 Jul; 30(28):8400-7. PubMed ID: 24976266 [TBL] [Abstract][Full Text] [Related]
52. Rapid Bouncing of High-Speed Drops on Hydrophobic Surfaces with Microcavities. Zhang R; Hao P; He F Langmuir; 2016 Oct; 32(39):9967-9974. PubMed ID: 27599116 [TBL] [Abstract][Full Text] [Related]
53. Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate. Pham JT; Paven M; Wooh S; Kajiya T; Butt HJ; Vollmer D Nat Commun; 2017 Oct; 8(1):905. PubMed ID: 29030546 [TBL] [Abstract][Full Text] [Related]
54. Bouncing dynamics of liquid drops impact on ridge structure: an effective approach to reduce the contact time. Li T; Zhang L; Wang Z; Duan Y; Li J; Wang J; Li H Phys Chem Chem Phys; 2018 Jun; 20(24):16493-16500. PubMed ID: 29877527 [TBL] [Abstract][Full Text] [Related]
55. Damped Oscillatory Dynamics of a Drop Impacting over Oil-Infused Slippery Interfaces─Does the Oil Viscosity Slow it Down? Bandyopadhyay S; Bakli C; Mukherjee R; Chakraborty S Langmuir; 2023 Sep; 39(36):12826-12834. PubMed ID: 37642554 [TBL] [Abstract][Full Text] [Related]
56. A solvable model of axisymmetric and non-axisymmetric droplet bouncing. Andrew M; Yeomans JM; Pushkin DO Soft Matter; 2017 Feb; 13(5):985-994. PubMed ID: 28078337 [TBL] [Abstract][Full Text] [Related]
57. Asymmetric Jetting during the Impact of Liquid Drops on Superhydrophobic Concave Surfaces. Chen C; Zhong H; Liu Z; Wang J; Wang J; Liu G; Li Y; Zhu P Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144146 [TBL] [Abstract][Full Text] [Related]
58. Pancake bouncing: simulations and theory and experimental verification. Moevius L; Liu Y; Wang Z; Yeomans JM Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146 [TBL] [Abstract][Full Text] [Related]
59. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods. Hisler V; Jendoubi H; Hairaye C; Vonna L; Le Houérou V; Mermet F; Nardin M; Haidara H Langmuir; 2016 Aug; 32(31):7765-73. PubMed ID: 27408983 [TBL] [Abstract][Full Text] [Related]
60. Reducing the contact time of a bouncing drop. Bird JC; Dhiman R; Kwon HM; Varanasi KK Nature; 2013 Nov; 503(7476):385-8. PubMed ID: 24256803 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]