BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34960902)

  • 1. Composite Polymers from Leather Waste to Produce Smart Fertilizers.
    Stefan DS; Bosomoiu M; Constantinescu RR; Ignat M
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen-Based Hydrogels Composites from Hide Waste to Produce Smart Fertilizers.
    Stefan DS; Zainescu G; Manea-Saghin AM; Triantaphyllidou IE; Tzoumani I; Tatoulis TI; Syriopoulos GΤ; Meghea A
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33019785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of Soil Quality Improvement Using Biopolymers from Leather Waste.
    Stefan DS; Bosomoiu M; Dancila AM; Stefan M
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Solubilisation of Leather Industry Waste in Anaerobic Conditions: Effect of Chromium (III) Presence, Pre-Treatments and Temperature Strategies.
    Fernández-Rodríguez J; Lorea B; González-Gaitano G
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leather solid waste: An eco-benign raw material for leather chemical preparation - A circular economy example.
    Sathish M; Madhan B; Raghava Rao J
    Waste Manag; 2019 Mar; 87():357-367. PubMed ID: 31109536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient recovery from municipal solid waste leachate in the scope of circular economy: Recent developments and future perspectives.
    Ersahin ME; Cicekalan B; Cengiz AI; Zhang X; Ozgun H
    J Environ Manage; 2023 Jun; 335():117518. PubMed ID: 36841005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues.
    Pati A; Chaudhary R; Subramani S
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11266-82. PubMed ID: 24906828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Collagen-Based Composites as Fertilizers Obtained by Recycling Lime Pelts Waste Resulted during Leather Manufacture.
    Stefan DS; Manea-Saghin AM; Triantaphyllidou IE; Tzoumani I; Meghea I
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomaterials to help eco-friendly leather processing.
    Kopp VV; Agustini CB; Gutterres M; Dos Santos JHZ
    Environ Sci Pollut Res Int; 2021 Oct; 28(40):55905-55914. PubMed ID: 34494189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications.
    Shanmugavel D; Rusyn I; Solorza-Feria O; Kamaraj SK
    Sci Total Environ; 2023 Dec; 904():166729. PubMed ID: 37678530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan.
    Ocak B
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4643-4655. PubMed ID: 29197053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An application of advanced hair-save processes in leather industry as the reason of formation of keratinous waste: few peculiarities of its utilisation.
    Valeika V; Širvaitytė J; Bridžiuvienė D; Švedienė J
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):6223-6233. PubMed ID: 30635886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of Chrome-Tanned Leather and Its Utilization as Polymeric Materials and in Polymer-Based Composites: A Review.
    Parisi M; Nanni A; Colonna M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33572866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorisation of agri-food waste to fertilisers is a challenge in implementing the circular economy concept in practice.
    Chojnacka K; Moustakas K; Mikulewicz M
    Environ Pollut; 2022 Nov; 312():119906. PubMed ID: 35987290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New directions for agricultural wastes valorization as hydrogel biocomposite fertilizers.
    Skrzypczak D; Mikula K; Izydorczyk G; Dawiec-Liśniewska A; Moustakas K; Chojnacka K; Witek-Krowiak A
    J Environ Manage; 2021 Dec; 299():113480. PubMed ID: 34474255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depollution of Polymeric Leather Waste by Applying the Most Current Methods of Chromium Extraction.
    Codreanu Manea AN; Stefan DS; Kim L; Stefan M
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.
    Nogueira FG; Castro IA; Bastos AR; Souza GA; de Carvalho JG; Oliveira LC
    J Hazard Mater; 2011 Feb; 186(2-3):1064-9. PubMed ID: 21167640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective utilization of tannery hair waste to develop a high-performing re-tanning agent for cleaner leather manufacturing.
    Ramya KR; Sathish M; Madhan B; Jaisankar SN; Saravanan P
    J Environ Manage; 2022 Jan; 302(Pt A):114029. PubMed ID: 34872177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable leather making - An amphoteric organic chrome-free tanning agents based on recycling waste leather.
    Hao D; Wang X; Liang S; Yue O; Liu X; Hao D; Dang X
    Sci Total Environ; 2023 Apr; 867():161531. PubMed ID: 36638976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.
    Pati A; Chaudhary R
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20316-21. PubMed ID: 26498969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.