These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34961000)

  • 41. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse.
    Vanitjinda G; Nimchua T; Sukyai P
    Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization.
    Yang Q; Saito T; Berglund LA; Isogai A
    Nanoscale; 2015 Nov; 7(42):17957-63. PubMed ID: 26465589
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films.
    Zhang L; Zhao J; Zhang Y; Li F; Jiao X; Li Q
    Int J Biol Macromol; 2021 Dec; 192():444-451. PubMed ID: 34606791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of all-cellulose nanocomposites from corn stalk.
    Bian H; Tu P; Chen JY
    J Sci Food Agric; 2020 Sep; 100(12):4390-4399. PubMed ID: 32388869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers.
    Wang B; Nie Y; Kang Z; Liu X
    Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent.
    Chen Q; Shi Y; Chen G; Cai M
    Int J Biol Macromol; 2020 Jan; 142():846-854. PubMed ID: 31622700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient fabrication of anisotropic regenerated cellulose films from bamboo via a facile wet extrusion strategy.
    Lin X; Huang C; Wu P; Chai H; Cai C; Peng Y; Wang J; Li Y; Xu D; Li X
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130966. PubMed ID: 38508546
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane.
    Liang Z; Li X; Li M; Hong Y
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions.
    Cai J; Zhang L
    Macromol Biosci; 2005 Jun; 5(6):539-48. PubMed ID: 15954076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose.
    Atef M; Rezaei M; Behrooz R
    Int J Biol Macromol; 2014 Sep; 70():537-44. PubMed ID: 25036597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature.
    Cai J; Zhang L; Chang C; Cheng G; Chen X; Chu B
    Chemphyschem; 2007 Jul; 8(10):1572-9. PubMed ID: 17569094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-strength cellulose films obtained by the combined action of shear force and surface selective dissolution.
    Qiao H; Li L; Wu J; Zhang Y; Liao Y; Zhou H; Li D
    Carbohydr Polym; 2020 Apr; 233():115883. PubMed ID: 32059914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface Modification of a Regenerated Cellulose Film Using Low-Pressure Plasma Treatment with Various Reactive Gases.
    Kawano T; Wang MJ; Andou Y
    ACS Omega; 2022 Dec; 7(48):44085-44092. PubMed ID: 36506144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradable, Strong, and Hydrophobic Regenerated Cellulose Films Enriched with Esterified Lignin Nanoparticles.
    Tian R; Wang C; Jiang W; Janaswamy S; Yang G; Ji X; Lyu G
    Small; 2024 Mar; ():e2309651. PubMed ID: 38530065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution.
    Sun L; Chen JY; Jiang W; Lynch V
    Carbohydr Polym; 2015 Mar; 118():150-5. PubMed ID: 25542120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of regenerated cellulose/halloysites nanocomposites via ionic liquids.
    Hanid NA; Wahit MU; Guo Q; Mahmoodian S; Soheilmoghaddam M
    Carbohydr Polym; 2014 Jan; 99():91-7. PubMed ID: 24274483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aqueous-Cellulose-Solvent-Derived Changes in Cellulose Nanocrystal Structure and Reinforcing Effects.
    Tong Y; Huang S; Meng X; Wang Y
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation.
    Fu F; Li L; Liu L; Cai J; Zhang Y; Zhou J; Zhang L
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2597-606. PubMed ID: 25569533
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Internal surface polarity of regenerated cellulose gel depends on the species used as coagulant.
    Isobe N; Kim UJ; Kimura S; Wada M; Kuga S
    J Colloid Interface Sci; 2011 Jul; 359(1):194-201. PubMed ID: 21470620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.