These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34961006)
1. Highly Stretchable Bacterial Cellulose Produced by Cielecka I; Ryngajłło M; Maniukiewicz W; Bielecki S Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961006 [TBL] [Abstract][Full Text] [Related]
2. Complete genome sequence and transcriptome response to vitamin C supplementation of Novacetimonas hansenii SI1 - producer of highly-stretchable cellulose. Ryngajłło M; Cielecka I; Daroch M N Biotechnol; 2024 Jul; 81():57-68. PubMed ID: 38531507 [TBL] [Abstract][Full Text] [Related]
3. Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582. Jacek P; Kubiak K; Ryngajłło M; Rytczak P; Paluch P; Bielecki S N Biotechnol; 2019 Sep; 52():60-68. PubMed ID: 31096013 [TBL] [Abstract][Full Text] [Related]
4. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea. Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481 [TBL] [Abstract][Full Text] [Related]
5. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Li Z; Chen SQ; Cao X; Li L; Zhu J; Yu H J Microbiol Biotechnol; 2021 Mar; 31(3):429-438. PubMed ID: 33323677 [TBL] [Abstract][Full Text] [Related]
7. Set-Up of Bacterial Cellulose Production From the Genus Vigentini I; Fabrizio V; Dellacà F; Rossi S; Azario I; Mondin C; Benaglia M; Foschino R Front Microbiol; 2019; 10():1953. PubMed ID: 31551945 [TBL] [Abstract][Full Text] [Related]
8. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Jacek P; Ryngajłło M; Bielecki S Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382 [TBL] [Abstract][Full Text] [Related]
9. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077 [TBL] [Abstract][Full Text] [Related]
10. Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha. Gupte Y; Kulkarni A; Raut B; Sarkar P; Choudhury R; Chawande A; Kumar GRK; Bhadra B; Satapathy A; Das G; Vishnupriya B; Dasgupta S Carbohydr Polym; 2021 Aug; 266():118176. PubMed ID: 34044916 [TBL] [Abstract][Full Text] [Related]
11. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838 [TBL] [Abstract][Full Text] [Related]
12. Gomes RJ; de Sousa Faria-Tischer PC; Tischer CA; Constantino LV; de Freitas Rosa M; Chideroli RT; de Pádua Pereira U; Spinosa WA Food Technol Biotechnol; 2021 Dec; 59(4):432-442. PubMed ID: 35136368 [TBL] [Abstract][Full Text] [Related]
14. Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS.5. Saleh AK; Soliman NA; Farrag AA; Ibrahim MM; El-Shinnawy NA; Abdel-Fattah YR Int J Biol Macromol; 2020 Feb; 144():198-207. PubMed ID: 31843613 [TBL] [Abstract][Full Text] [Related]
15. A turning point in the bacterial nanocellulose production employing low doses of gamma radiation. Al-Hagar OEA; Abol-Fotouh D Sci Rep; 2022 Apr; 12(1):7012. PubMed ID: 35488046 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans. Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748 [TBL] [Abstract][Full Text] [Related]
17. Bacterial Cellulose Production from agricultural Residues by two Akintunde MO; Adebayo-Tayo BC; Ishola MM; Zamani A; Horváth IS Bioengineered; 2022 Apr; 13(4):10010-10025. PubMed ID: 35416127 [TBL] [Abstract][Full Text] [Related]
18. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties. Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261 [TBL] [Abstract][Full Text] [Related]
20. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Naloka K; Matsushita K; Theeragool G Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]