BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34961153)

  • 1. High-Yield Production of Receptor Binding Domain of SARS-CoV-2 Linked to Bacterial Flagellin in Plants Using Self-Replicating Viral Vector pEff.
    Mardanova ES; Kotlyarov RY; Ravin NV
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Transient Expression of Receptor-Binding Domain of SARS-CoV-2 and the Conserved M2e Peptide of Influenza A Virus Linked to Flagellin in
    Mardanova ES; Kotlyarov RY; Ravin NV
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Yield Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope and Receptor Binding Domain of SARS-CoV-2 in Plants Using Viral Vectors.
    Mardanova ES; Kotlyarov RY; Stuchinskaya MD; Nikolaeva LI; Zahmanova G; Ravin NV
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-Produced Recombinant Influenza A Virus Candidate Vaccine Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin.
    Blokhina EA; Mardanova ES; Stepanova LA; Tsybalova LM; Ravin NV
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 32013187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana.
    Rattanapisit K; Shanmugaraj B; Manopwisedjaroen S; Purwono PB; Siriwattananon K; Khorattanakulchai N; Hanittinan O; Boonyayothin W; Thitithanyanont A; Smith DR; Phoolcharoen W
    Sci Rep; 2020 Oct; 10(1):17698. PubMed ID: 33077899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines.
    Guo Y; He W; Mou H; Zhang L; Chang J; Peng S; Ojha A; Tavora R; Parcells MS; Luo G; Li W; Zhong G; Choe H; Farzan M; Quinlan BD
    mBio; 2021 May; 12(3):. PubMed ID: 33975938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs.
    Ruocco V; Vavra U; König-Beihammer J; Bolaños Martínez OC; Kallolimath S; Maresch D; Grünwald-Gruber C; Strasser R
    Front Plant Sci; 2023; 14():1275228. PubMed ID: 37868317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel DNA Vaccine Against SARS-CoV-2 Encoding a Chimeric Protein of Its Receptor-Binding Domain (RBD) Fused to the Amino-Terminal Region of Hepatitis B Virus preS1 With a W4P Mutation.
    Jeong H; Choi YM; Seo H; Kim BJ
    Front Immunol; 2021; 12():637654. PubMed ID: 33732258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal Antibodies B38 and H4 Produced in
    Shanmugaraj B; Rattanapisit K; Manopwisedjaroen S; Thitithanyanont A; Phoolcharoen W
    Front Plant Sci; 2020; 11():589995. PubMed ID: 33329653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19.
    Chen WH; Hotez PJ; Bottazzi ME
    Hum Vaccin Immunother; 2020 Jun; 16(6):1239-1242. PubMed ID: 32298218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates.
    Kang YF; Sun C; Zhuang Z; Yuan RY; Zheng Q; Li JP; Zhou PP; Chen XC; Liu Z; Zhang X; Yu XH; Kong XW; Zhu QY; Zhong Q; Xu M; Zhong NS; Zeng YX; Feng GK; Ke C; Zhao JC; Zeng MS
    ACS Nano; 2021 Feb; 15(2):2738-2752. PubMed ID: 33464829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity.
    Yang J; Wang W; Chen Z; Lu S; Yang F; Bi Z; Bao L; Mo F; Li X; Huang Y; Hong W; Yang Y; Zhao Y; Ye F; Lin S; Deng W; Chen H; Lei H; Zhang Z; Luo M; Gao H; Zheng Y; Gong Y; Jiang X; Xu Y; Lv Q; Li D; Wang M; Li F; Wang S; Wang G; Yu P; Qu Y; Yang L; Deng H; Tong A; Li J; Wang Z; Yang J; Shen G; Zhao Z; Li Y; Luo J; Liu H; Yu W; Yang M; Xu J; Wang J; Li H; Wang H; Kuang D; Lin P; Hu Z; Guo W; Cheng W; He Y; Song X; Chen C; Xue Z; Yao S; Chen L; Ma X; Chen S; Gou M; Huang W; Wang Y; Fan C; Tian Z; Shi M; Wang FS; Dai L; Wu M; Li G; Wang G; Peng Y; Qian Z; Huang C; Lau JY; Yang Z; Wei Y; Cen X; Peng X; Qin C; Zhang K; Lu G; Wei X
    Nature; 2020 Oct; 586(7830):572-577. PubMed ID: 32726802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In
    Mamedov T; Gurbuzaslan I; Yuksel D; Ilgin M; Mammadova G; Ozkul A; Hasanova G
    Front Plant Sci; 2021; 12():742875. PubMed ID: 34938305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding.
    Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoglobulin fragment F(ab')
    Pan X; Zhou P; Fan T; Wu Y; Zhang J; Shi X; Shang W; Fang L; Jiang X; Shi J; Sun Y; Zhao S; Gong R; Chen Z; Xiao G
    Antiviral Res; 2020 Oct; 182():104868. PubMed ID: 32659292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, Expression, Purification, and Characterization of a YFP-Tagged 2019-nCoV Spike Receptor-Binding Domain Construct.
    Bierig T; Collu G; Blanc A; Poghosyan E; Benoit RM
    Front Bioeng Biotechnol; 2020; 8():618615. PubMed ID: 33409271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel pEff Vector Based on the Genome of Potato Virus X.
    Mardanova ES; Blokhina EA; Tsybalova LM; Peyret H; Lomonossoff GP; Ravin NV
    Front Plant Sci; 2017; 8():247. PubMed ID: 28293244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunization with RBD-P2 and N protects against SARS-CoV-2 in nonhuman primates.
    Hong SH; Oh H; Park YW; Kwak HW; Oh EY; Park HJ; Kang KW; Kim G; Koo BS; Hwang EH; Baek SH; Park HJ; Lee YS; Bang YJ; Kim JY; Bae SH; Lee SJ; Seo KW; Kim H; Kwon T; Kim JH; Lee S; Kim E; Kim Y; Park JH; Park SI; Gonçalves M; Weon BM; Jeong H; Nam KT; Hwang KA; Kim J; Kim H; Lee SM; Hong JJ; Nam JH
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34049881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates.
    Li T; Zheng Q; Yu H; Wu D; Xue W; Xiong H; Huang X; Nie M; Yue M; Rong R; Zhang S; Zhang Y; Wu Y; Wang S; Zha Z; Chen T; Deng T; Wang Y; Zhang T; Chen Y; Yuan Q; Zhao Q; Zhang J; Gu Y; Li S; Xia N
    Emerg Microbes Infect; 2020 Dec; 9(1):2076-2090. PubMed ID: 32897177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection.
    Zang J; Zhu Y; Zhou Y; Gu C; Yi Y; Wang S; Xu S; Hu G; Du S; Yin Y; Wang Y; Yang Y; Zhang X; Wang H; Yin F; Zhang C; Deng Q; Xie Y; Huang Z
    Cell Discov; 2021 Aug; 7(1):71. PubMed ID: 34408130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.