These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34961184)

  • 1. Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning.
    Sultana SN; Park H; Choi SH; Jo H; Song JT; Lee JD; Kang YJ
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection.
    Sakoda K; Watanabe T; Sukemura S; Kobayashi S; Nagasaki Y; Tanaka Y; Shiraiwa T
    Sci Rep; 2019 May; 9(1):7610. PubMed ID: 31110228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscope image based fully automated stomata detection and pore measurement method for grapevines.
    Jayakody H; Liu S; Whitty M; Petrie P
    Plant Methods; 2017; 13():94. PubMed ID: 29151841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From leaf to label: A robust automated workflow for stomata detection.
    Meeus S; Van den Bulcke J; Wyffels F
    Ecol Evol; 2020 Sep; 10(17):9178-9191. PubMed ID: 32953053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Method for Fully Automatic Stomatal Morphometry and Maximal Conductance Estimation.
    Gibbs JA; Mcausland L; Robles-Zazueta CA; Murchie EH; Burgess AJ
    Front Plant Sci; 2021; 12():780180. PubMed ID: 34925424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Affordable Image-Analysis Platform to Accelerate Stomatal Phenotyping During Microscopic Observation.
    Toda Y; Tameshige T; Tomiyama M; Kinoshita T; Shimizu KK
    Front Plant Sci; 2021; 12():715309. PubMed ID: 34394171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RotatedStomataNet: a deep rotated object detection network for directional stomata phenotype analysis.
    Yang X; Wang J; Li F; Zhou C; Wu M; Zheng C; Yang L; Li Z; Li Y; Guo S; Song C
    Plant Cell Rep; 2024 Apr; 43(5):126. PubMed ID: 38652181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated estimation of stomatal number and aperture in haskap (Lonicera caerulea L.).
    Meng X; Nakano A; Hoshino Y
    Planta; 2023 Sep; 258(4):77. PubMed ID: 37673805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating Automated Stomata Analysis Through Simplified Sample Collection and Imaging Techniques.
    Millstead L; Jayakody H; Patel H; Kaura V; Petrie PR; Tomasetig F; Whitty M
    Front Plant Sci; 2020; 11():580389. PubMed ID: 33101348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Transfer Learning-Based Multi-Object Detection for Plant Stomata Phenotypic Traits Intelligent Recognition.
    Yang XH; Xi ZJ; Li JP; Feng XL; Zhu XH; Guo SY; Song CP
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):321-329. PubMed ID: 34941519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Deep Learning Automatic Vehicle Recognition Algorithm Based on RES-YOLO Model.
    Li Y; Wang J; Huang J; Li Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Integrated Method for Tracking and Monitoring Stomata Dynamics from Microscope Videos.
    Sun Z; Song Y; Li Q; Cai J; Wang X; Zhou Q; Huang M; Jiang D
    Plant Phenomics; 2021; 2021():9835961. PubMed ID: 34250505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Stomatal Segmentation Based on Delaunay-Rayleigh Frequency Distance.
    Carrasco M; Toledo PA; Velázquez R; Bruno OM
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33233729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. StomataCounter: a neural network for automatic stomata identification and counting.
    Fetter KC; Eberhardt S; Barclay RS; Wing S; Keller SR
    New Phytol; 2019 Aug; 223(3):1671-1681. PubMed ID: 31059134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different Leaf Anatomical Responses to Water Deficit in Maize and Soybean.
    Mano NA; Madore B; Mickelbart MV
    Life (Basel); 2023 Jan; 13(2):. PubMed ID: 36836647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes.
    Tripathi P; Rabara RC; Reese RN; Miller MA; Rohila JS; Subramanian S; Shen QJ; Morandi D; Bücking H; Shulaev V; Rushton PJ
    BMC Genomics; 2016 Feb; 17():102. PubMed ID: 26861168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotating Stomata Measurement Based on Anchor-Free Object Detection and Stomata Conductance Calculation.
    Zhang F; Wang B; Lu F; Zhang X
    Plant Phenomics; 2023; 5():0106. PubMed ID: 37817885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid non-destructive method to phenotype stomatal traits.
    Pathoumthong P; Zhang Z; Roy SJ; El Habti A
    Plant Methods; 2023 Mar; 19(1):36. PubMed ID: 37004073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.