These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34961184)

  • 21. Rapid non-destructive method to phenotype stomatal traits.
    Pathoumthong P; Zhang Z; Roy SJ; El Habti A
    Plant Methods; 2023 Mar; 19(1):36. PubMed ID: 37004073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.
    Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH
    Neuroimage Clin; 2020; 28():102464. PubMed ID: 33395960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A stomata classification and detection system in microscope images of maize cultivars.
    Aono AH; Nagai JS; Dickel GDSM; Marinho RC; de Oliveira PEAM; Papa JP; Faria FA
    PLoS One; 2021; 16(10):e0258679. PubMed ID: 34695146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RSI-YOLO: Object Detection Method for Remote Sensing Images Based on Improved YOLO.
    Li Z; Yuan J; Li G; Wang H; Li X; Li D; Wang X
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity.
    Arve LE; Carvalho DR; Olsen JE; Torre S
    Plant Signal Behav; 2014; 9(7):e29192. PubMed ID: 25763494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A light and scanning electron microscopic diagnosis of leaf epidermal morphology and its systematic implications in Dryopteridaceae: Investigating 12 Pakistani taxa.
    Shah SN; Ahmad M; Zafar M; Malik K; Rashid N; Ullah F; Zaman W; Ali M
    Micron; 2018 Aug; 111():36-49. PubMed ID: 29857176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
    Nejad AR; van Meeteren U
    J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooktop Sensing Based on a YOLO Object Detection Algorithm.
    Azurmendi I; Zulueta E; Lopez-Guede JM; Azkarate J; González M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development.
    Chater CCC; Oliver J; Casson S; Gray JE
    New Phytol; 2014 Apr; 202(2):376-391. PubMed ID: 24611444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stomatal Development and Gene Expression in Rice Florets.
    Bertolino LT; Caine RS; Zoulias N; Yin X; Chater CCC; Biswal A; Quick WP; Gray JE
    Plant Cell Physiol; 2022 Nov; 63(11):1679-1694. PubMed ID: 35993973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance.
    Potkay A; Feng X
    New Phytol; 2023 Apr; 238(2):506-528. PubMed ID: 36377138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Rapid and Simple Method for Microscopy-Based Stomata Analyses.
    Eisele JF; Fäßler F; Bürgel PF; Chaban C
    PLoS One; 2016; 11(10):e0164576. PubMed ID: 27732636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter?
    Šantrůček J
    Ann Bot; 2022 Sep; 130(3):285-300. PubMed ID: 35452520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A naturally optimized mass transfer process: The stomatal transpiration of plant leaves.
    Xu K; Guo L; Ye H
    J Plant Physiol; 2019; 234-235():138-144. PubMed ID: 30798115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Phenylmercuric Acetate on Stomatal Movement and Transpiration of Excised Retula papyrifera Marsh. Leaves.
    Waisel Y; Borger GA; Kozlowski TT
    Plant Physiol; 1969 May; 44(5):685-90. PubMed ID: 16657121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Efficient Nanoscale Analysis of Plant Stomata and Cell Surface Using Polyaddition Silicone Rubber.
    He Y; Zhou K; Wu Z; Li B; Fu J; Lin C; Jiang D
    Front Plant Sci; 2019; 10():1569. PubMed ID: 31921235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana.
    Rezaei Nejad A; van Meeteren U
    J Exp Bot; 2008; 59(2):289-301. PubMed ID: 18238802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. YOLO POD: a fast and accurate multi-task model for dense Soybean Pod counting.
    Xiang S; Wang S; Xu M; Wang W; Liu W
    Plant Methods; 2023 Jan; 19(1):8. PubMed ID: 36709313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron microscopic observations of stomata, epicuticular waxes, and papillae in Chamaecyparis obtusa: Reconsidering the traditional concept of Y-shaped white stomatal bands.
    Kim KW
    Microsc Res Tech; 2018 Jul; 81(7):716-723. PubMed ID: 29624793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.