These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34961251)
1. Microtensiometers Accurately Measure Stem Water Potential in Woody Perennials. Blanco V; Kalcsits L Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961251 [TBL] [Abstract][Full Text] [Related]
2. Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus orchards. Garc A-Tejero INF; Dur N-Zuazo VCH; Muriel-Fern Ndez JL; Jim Nez-Bocanegra JA Funct Plant Biol; 2011 Feb; 38(2):106-117. PubMed ID: 32480867 [TBL] [Abstract][Full Text] [Related]
3. Impact of a DANA Event on the Thermal Response of Nectarine Trees. Conesa MR; Conejero W; Vera J; Mira-García AB; Ruiz-Sánchez MC Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840255 [TBL] [Abstract][Full Text] [Related]
4. Assessment of trunk microtensiometer as a novel biosensor to continuously monitor plant water status in nectarine trees. Conesa MR; Conejero W; Vera J; Ruiz-Sánchez MC Front Plant Sci; 2023; 14():1123045. PubMed ID: 36875560 [TBL] [Abstract][Full Text] [Related]
5. Combining thermal imaging and soil water content sensors to assess tree water status in pear trees. Blanco V; Willsea N; Campbell T; Howe O; Kalcsits L Front Plant Sci; 2023; 14():1197437. PubMed ID: 37346137 [TBL] [Abstract][Full Text] [Related]
6. [Effect of soil moisture on water potential gradients in the soil-plant-atmosphere continuum (SPAC) of apple orchards in the Loess Plateau, Northwest China]. Dang HZ; Que XE; Feng JC; Wang MM; Chen S Ying Yong Sheng Tai Xue Bao; 2020 Mar; 31(3):829-836. PubMed ID: 32537978 [TBL] [Abstract][Full Text] [Related]
7. Combining proximal and remote sensing to assess 'Calatina' olive water status. Carella A; Massenti R; Marra FP; Catania P; Roma E; Lo Bianco R Front Plant Sci; 2024; 15():1448656. PubMed ID: 39228839 [TBL] [Abstract][Full Text] [Related]
8. A Cultivar-Sensitive Approach for the Continuous Monitoring of Olive ( Scalisi A; Marino G; Marra FP; Caruso T; Lo Bianco R Front Plant Sci; 2020; 11():340. PubMed ID: 32265975 [TBL] [Abstract][Full Text] [Related]
9. Assessing water stress in a high-density apple orchard using trunk circumference variation, sap flow index and stem water potential. Wheeler WD; Black B; Bugbee B Front Plant Sci; 2023; 14():1214429. PubMed ID: 37600171 [TBL] [Abstract][Full Text] [Related]
10. Leaf Water Relations in Lime Trees Grown under Shade Netting and Open-Air. Mira-García AB; Conejero W; Vera J; Ruiz-Sánchez MC Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32326660 [TBL] [Abstract][Full Text] [Related]
11. Yield and Water Productivity Responses to Irrigation Cut-off Strategies after Fruit Set Using Stem Water Potential Thresholds in a Super-High Density Olive Orchard. Ahumada-Orellana LE; Ortega-Farías S; Searles PS; Retamales JB Front Plant Sci; 2017; 8():1280. PubMed ID: 28785274 [TBL] [Abstract][Full Text] [Related]
12. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit. Paudel I; Naor A; Gal Y; Cohen S Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897 [TBL] [Abstract][Full Text] [Related]
13. Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies. Nowack JC; Atencia-Payares LK; Tarquis AM; Gomez-Del-Campo M Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794420 [TBL] [Abstract][Full Text] [Related]
14. Retention of stored water enables tropical tree saplings to survive extreme drought conditions. Wolfe BT Tree Physiol; 2017 Apr; 37(4):469-480. PubMed ID: 28338739 [TBL] [Abstract][Full Text] [Related]
15. Relating microtensiometer-based trunk water potential with sap flow, canopy temperature, and trunk and fruit diameter variations for irrigated 'Honeycrisp' apple. Blanco V; Kalcsits L Front Plant Sci; 2024; 15():1393028. PubMed ID: 38855474 [TBL] [Abstract][Full Text] [Related]
16. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Poblete T; Ortega-Farías S; Moreno MA; Bardeen M Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29084169 [TBL] [Abstract][Full Text] [Related]
17. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions. Rahmati M; Davarynejad GH; Génard M; Bannayan M; Azizi M; Vercambre G PLoS One; 2015; 10(4):e0120246. PubMed ID: 25830350 [TBL] [Abstract][Full Text] [Related]
18. Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Basile B; Marsal J; DeJong TM Tree Physiol; 2003 Jul; 23(10):695-704. PubMed ID: 12777242 [TBL] [Abstract][Full Text] [Related]
19. Stomatal behaviour of irrigated Vitis vinifera cv. Syrah following partial root removal. Zufferey V; Smart DR Funct Plant Biol; 2012 Dec; 39(12):1019-1027. PubMed ID: 32480851 [TBL] [Abstract][Full Text] [Related]
20. Partial rootzone drying improves almond tree leaf-level water use efficiency and afternoon water status compared with regulated deficit irrigation. Egea G; Dodd IC; Gonz Lez-Real MAM; Domingo R; Baille A Funct Plant Biol; 2011 Jun; 38(5):372-385. PubMed ID: 32480894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]