These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34961458)
1. Transfer Learning of the ResNet-18 and DenseNet-121 Model Used to Diagnose Intracranial Hemorrhage in CT Scanning. Zhou Q; Zhu W; Li F; Yuan M; Zheng L; Liu X Curr Pharm Des; 2022; 28(4):287-295. PubMed ID: 34961458 [TBL] [Abstract][Full Text] [Related]
2. Deep Transfer Learning for Automatic Prediction of Hemorrhagic Stroke on CT Images. Rao BN; Mohanty S; Sen K; Acharya UR; Cheong KH; Sabut S Comput Math Methods Med; 2022; 2022():3560507. PubMed ID: 35469220 [TBL] [Abstract][Full Text] [Related]
3. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Ye H; Gao F; Yin Y; Guo D; Zhao P; Lu Y; Wang X; Bai J; Cao K; Song Q; Zhang H; Chen W; Guo X; Xia J Eur Radiol; 2019 Nov; 29(11):6191-6201. PubMed ID: 31041565 [TBL] [Abstract][Full Text] [Related]
4. CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists. Kim H; Lee D; Cho WS; Lee JC; Goo JM; Kim HC; Park CM Eur Radiol; 2020 Jun; 30(6):3295-3305. PubMed ID: 32055949 [TBL] [Abstract][Full Text] [Related]
5. A Simplified Framework for the Detection of Intracranial Hemorrhage in CT Brain Images Using Deep Learning. Kumaravel P; Mohan S; Arivudaiyanambi J; Shajil N; Venkatakrishnan HN Curr Med Imaging; 2021; 17(10):1226-1236. PubMed ID: 33602101 [TBL] [Abstract][Full Text] [Related]
6. Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans. D'Angelo T; Bucolo GM; Kamareddine T; Yel I; Koch V; Gruenewald LD; Martin S; Alizadeh LS; Mazziotti S; Blandino A; Vogl TJ; Booz C Radiol Med; 2024 Oct; 129(10):1499-1506. PubMed ID: 39123064 [TBL] [Abstract][Full Text] [Related]
7. Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans. Danilov G; Kotik K; Negreeva A; Tsukanova T; Shifrin M; Zakharova N; Batalov A; Pronin I; Potapov A Stud Health Technol Inform; 2020 Jun; 272():370-373. PubMed ID: 32604679 [TBL] [Abstract][Full Text] [Related]
8. Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT. Chang PD; Kuoy E; Grinband J; Weinberg BD; Thompson M; Homo R; Chen J; Abcede H; Shafie M; Sugrue L; Filippi CG; Su MY; Yu W; Hess C; Chow D AJNR Am J Neuroradiol; 2018 Sep; 39(9):1609-1616. PubMed ID: 30049723 [TBL] [Abstract][Full Text] [Related]
9. Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Ginat DT Neuroradiology; 2020 Mar; 62(3):335-340. PubMed ID: 31828361 [TBL] [Abstract][Full Text] [Related]
10. Improving Sensitivity on Identification and Delineation of Intracranial Hemorrhage Lesion Using Cascaded Deep Learning Models. Cho J; Park KS; Karki M; Lee E; Ko S; Kim JK; Lee D; Choe J; Son J; Kim M; Lee S; Lee J; Yoon C; Park S J Digit Imaging; 2019 Jun; 32(3):450-461. PubMed ID: 30680471 [TBL] [Abstract][Full Text] [Related]
11. Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm. Lee JY; Kim JS; Kim TY; Kim YS Sci Rep; 2020 Nov; 10(1):20546. PubMed ID: 33239711 [TBL] [Abstract][Full Text] [Related]
12. A comparison of performance between a deep learning model with residents for localization and classification of intracranial hemorrhage. Angkurawaranon S; Sanorsieng N; Unsrisong K; Inkeaw P; Sripan P; Khumrin P; Angkurawaranon C; Vaniyapong T; Chitapanarux I Sci Rep; 2023 Jun; 13(1):9975. PubMed ID: 37340038 [TBL] [Abstract][Full Text] [Related]
13. Utility of deep learning for the diagnosis of otosclerosis on temporal bone CT. Fujima N; Andreu-Arasa VC; Onoue K; Weber PC; Hubbell RD; Setty BN; Sakai O Eur Radiol; 2021 Jul; 31(7):5206-5211. PubMed ID: 33409781 [TBL] [Abstract][Full Text] [Related]
14. Deep residual nets model for staging liver fibrosis on plain CT images. Li Q; Yu B; Tian X; Cui X; Zhang R; Guo Q Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1399-1406. PubMed ID: 32556922 [TBL] [Abstract][Full Text] [Related]
15. How much can AI see in early pregnancy: A multi-center study of fetus head characterization in week 10-14 in ultrasound using deep learning. Lin Q; Zhou Y; Shi S; Zhang Y; Yin S; Liu X; Peng Q; Huang S; Jiang Y; Cui C; She R; Xu J; Dong F Comput Methods Programs Biomed; 2022 Nov; 226():107170. PubMed ID: 36272307 [TBL] [Abstract][Full Text] [Related]
16. Feasible Study on Intracranial Hemorrhage Detection and Classification using a CNN-LSTM Network. Ko H; Chung H; Lee H; Lee J Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1290-1293. PubMed ID: 33018224 [TBL] [Abstract][Full Text] [Related]
17. Impact of a deep learning-based brain CT interpretation algorithm on clinical decision-making for intracranial hemorrhage in the emergency department. Choi SY; Kim JH; Chung HS; Lim S; Kim EH; Choi A Sci Rep; 2024 Sep; 14(1):22292. PubMed ID: 39333329 [TBL] [Abstract][Full Text] [Related]
18. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. Wang X; Shen T; Yang S; Lan J; Xu Y; Wang M; Zhang J; Han X Neuroimage Clin; 2021; 32():102785. PubMed ID: 34411910 [TBL] [Abstract][Full Text] [Related]
19. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Kuo W; HÓ“ne C; Mukherjee P; Malik J; Yuh EL Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22737-22745. PubMed ID: 31636195 [TBL] [Abstract][Full Text] [Related]
20. Differential diagnosis of acute intracranial hemorrhage and calcification by cranial dual-energy computed tomography. Song F; Zhang F J Int Med Res; 2023 Nov; 51(11):3000605231193935. PubMed ID: 37994049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]