These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34961959)

  • 41. Prezygotic isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus through differences in mating speed and germination timing.
    Murphy HA; Zeyl CW
    Evolution; 2012 Apr; 66(4):1196-209. PubMed ID: 22486698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins.
    Peris D; Lopes CA; Belloch C; Querol A; Barrio E
    BMC Genomics; 2012 Aug; 13():407. PubMed ID: 22906207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics.
    Sniegowski PD; Dombrowski PG; Fingerman E
    FEMS Yeast Res; 2002 Jan; 1(4):299-306. PubMed ID: 12702333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
    Carr M; Bensasson D; Bergman CM
    PLoS One; 2012; 7(11):e50978. PubMed ID: 23226439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Divergence of Peroxisome Membrane Gene Sequence and Expression Between Yeast Species.
    Dubin CA; Roop JI; Brem RB
    G3 (Bethesda); 2020 Jun; 10(6):2079-2085. PubMed ID: 32317271
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Revisiting the Taxonomic Synonyms and Populations of
    Pontes A; Hutzler M; Brito PH; Sampaio JP
    Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32549402
    [No Abstract]   [Full Text] [Related]  

  • 47. Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles.
    Sweeney JY; Kuehne HA; Sniegowski PD
    FEMS Yeast Res; 2004 Jan; 4(4-5):521-5. PubMed ID: 14734033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phylogenetic analysis of the Saccharomyces cerevisiae group based on polymorphisms of rDNA spacer sequences.
    Montrocher R; Verner MC; Briolay J; Gautier C; Marmeisse R
    Int J Syst Bacteriol; 1998 Jan; 48 Pt 1():295-303. PubMed ID: 9542100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus.
    Naumov GI; Naumova ES; Michels CA
    Genetics; 1994 Mar; 136(3):803-12. PubMed ID: 8005435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Horizontal transfer and proliferation of Tsu4 in Saccharomyces paradoxus.
    Bergman CM
    Mob DNA; 2018; 9():18. PubMed ID: 29942366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prezygotic reproductive isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus.
    Maclean CJ; Greig D
    BMC Evol Biol; 2008 Jan; 8():1. PubMed ID: 18179683
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Targeted metagenomics approach to capture the biodiversity of Saccharomyces genus in wild environments.
    Alsammar HF; Naseeb S; Brancia LB; Gilman RT; Wang P; Delneri D
    Environ Microbiol Rep; 2019 Apr; 11(2):206-214. PubMed ID: 30507071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide survey of natural selection on functional, structural, and network properties of polymorphic sites in Saccharomyces paradoxus.
    Vishnoi A; Sethupathy P; Simola D; Plotkin JB; Hannenhalli S
    Mol Biol Evol; 2011 Sep; 28(9):2615-27. PubMed ID: 21478372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics.
    Orsi RH; den Bakker HC; Wiedmann M
    Int J Med Microbiol; 2011 Feb; 301(2):79-96. PubMed ID: 20708964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A high-definition view of functional genetic variation from natural yeast genomes.
    Bergström A; Simpson JT; Salinas F; Barré B; Parts L; Zia A; Nguyen Ba AN; Moses AM; Louis EJ; Mustonen V; Warringer J; Durbin R; Liti G
    Mol Biol Evol; 2014 Apr; 31(4):872-88. PubMed ID: 24425782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae.
    Hyma KE; Saerens SM; Verstrepen KJ; Fay JC
    FEMS Yeast Res; 2011 Nov; 11(7):540-51. PubMed ID: 22093681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a polymerase chain reaction/restriction fragment length polymorphism method for Saccharomyces cerevisiae and Saccharomyces bayanus identification in enology.
    Masneuf I; Aigle M; Dubourdieu D
    FEMS Microbiol Lett; 1996 May; 138(2-3):239-44. PubMed ID: 9026453
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.
    Dunn B; Richter C; Kvitek DJ; Pugh T; Sherlock G
    Genome Res; 2012 May; 22(5):908-24. PubMed ID: 22369888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of the fitness determinants of budding yeast on a natural substrate.
    Filteau M; Charron G; Landry CR
    ISME J; 2017 Apr; 11(4):959-971. PubMed ID: 27935595
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Identification of the yeast species Saccharomyces bayanus in Far East Asia].
    Naumov GI; Gazdiev DO; Naumova ES
    Mikrobiologiia; 2003; 72(6):834-9. PubMed ID: 14768552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.