These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34962018)

  • 1. Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics.
    Guo X; Li J; Wang J; Huang L; Cheng G; Zhang Q; Zhu H; Zhang M; Zhu S
    Macromol Rapid Commun; 2022 Feb; 43(4):e2100716. PubMed ID: 34962018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers.
    Lei H; Dong L; Li Y; Zhang J; Chen H; Wu J; Zhang Y; Fan Q; Xue B; Qin M; Chen B; Cao Y; Wang W
    Nat Commun; 2020 Aug; 11(1):4032. PubMed ID: 32788575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable materials of high toughness and low hysteresis.
    Wang Z; Xiang C; Yao X; Le Floch P; Mendez J; Suo Z
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5967-5972. PubMed ID: 30850517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors.
    Ding H; Liu J; Huo P; Ding R; Shen X; Mao H; Wen Y; Li H; Wu ZL
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127146. PubMed ID: 37778581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors.
    Liang Y; Ye L; Sun X; Lv Q; Liang H
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity.
    Wang MX; Chen YM; Gao Y; Hu C; Hu J; Tan L; Yang Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26610-26617. PubMed ID: 29989387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resilient and Tough Conductive Polymer Hydrogel for a Low-Hysteresis Strain Sensor.
    Cao C; Huang T; Li Y
    Macromol Rapid Commun; 2024 Jan; 45(2):e2300467. PubMed ID: 37863475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection.
    Liang Y; Shen Y; Sun X; Liang H
    Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis-Free Double-Network Hydrogel-Based Strain Sensor for Wearable Smart Bioelectronics.
    Ko S; Chhetry A; Kim D; Yoon H; Park JY
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31363-31372. PubMed ID: 35764418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Hysteresis and High-Toughness Hydrogels Regulated by Porous Cationic Polymers: the Effect of Counteranions.
    Xiong J; Wang X; Li L; Li Q; Zheng S; Liu Z; Li W; Yan F
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202316375. PubMed ID: 37997003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MXene Crosslinked Hydrogels with Low Hysteresis Conferred by Sliding Tangle Island Strategy.
    Zou J; Jing X; Li S; Feng P; Chen Y; Liu Y
    Small; 2024 Apr; ():e2401622. PubMed ID: 38682610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extremely stretchable and tough hybrid hydrogels based on gelatin, κ-carrageenan and polyacrylamide.
    Sun X; Ye L; Liang H
    Soft Matter; 2021 Nov; 17(42):9708-9715. PubMed ID: 34642718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors.
    Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M
    Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.
    Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F
    Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors.
    Ding H; Liang X; Xu J; Tang Z; Li Z; Liang R; Sun G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22774-22784. PubMed ID: 33944548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture Toughness and Fatigue Threshold of Tough Hydrogels.
    Zhang W; Hu J; Tang J; Wang Z; Wang J; Lu T; Suo Z
    ACS Macro Lett; 2019 Jan; 8(1):17-23. PubMed ID: 35619405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors.
    Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement.
    Lei K; Chen M; Wang X; Gao J; Zhang J; Li G; Bao J; Li Z; Li J
    J Mater Chem B; 2022 Nov; 10(44):9188-9201. PubMed ID: 36314575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stretchable and tough hydrogels.
    Sun JY; Zhao X; Illeperuma WR; Chaudhuri O; Oh KH; Mooney DJ; Vlassak JJ; Suo Z
    Nature; 2012 Sep; 489(7414):133-6. PubMed ID: 22955625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks.
    Zhu R; Zhu D; Zheng Z; Wang X
    Nat Commun; 2024 Feb; 15(1):1344. PubMed ID: 38350981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.