These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34962018)

  • 21. Facile and cost-effective synthesis of glycogen-based conductive hydrogels with extremely flexible, excellent self-healing and tunable mechanical properties.
    Hussain I; Sayed SM; Fu G
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1463-1469. PubMed ID: 29964106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser-Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel.
    Rahimi R; Shams Es-Haghi S; Chittiboyina S; Mutlu Z; Lelièvre SA; Cakmak M; Ziaie B
    Adv Healthc Mater; 2018 Aug; 7(16):e1800231. PubMed ID: 29947042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust Conductive Hydrogels with Ultrafast Self-Recovery and Nearly Zero Response Hysteresis for Epidermal Sensors.
    Xu X; He C; Luo F; Wang H; Peng Z
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topologically Enhanced Dual-Network Hydrogels with Rapid Recovery for Low-Hysteresis, Self-Adhesive Epidemic Electronics.
    Zhang G; Chen S; Peng Z; Shi W; Liu Z; Shi H; Luo K; Wei G; Mo H; Li B; Liu L
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12531-12540. PubMed ID: 33685117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes.
    Fang L; Zhang J; Wang W; Zhang Y; Chen F; Zhou J; Chen F; Li R; Zhou X; Xie Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56393-56402. PubMed ID: 33274913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers.
    Sun D; Gao Y; Zhou Y; Yang M; Hu J; Lu T; Wang T
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49389-49397. PubMed ID: 36273343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unbreakable Hydrogels with Self-Recoverable 10 200% Stretchability.
    Tan S; Wang C; Yang B; Luo J; Wu Y
    Adv Mater; 2022 Oct; 34(40):e2206904. PubMed ID: 36000832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Highly Stretchable, Tough, Fast Self-Healing Hydrogel Based on Peptide⁻Metal Ion Coordination.
    Zeng L; Song M; Gu J; Xu Z; Xue B; Li Y; Cao Y
    Biomimetics (Basel); 2019 May; 4(2):. PubMed ID: 31105221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Stretchable, Tough, Resilient, and Antifatigue Hydrogels Based on Multiple Hydrogen Bonding Interactions Formed by Phenylalanine Derivatives.
    Yu J; Xu K; Chen X; Zhao X; Yang Y; Chu D; Xu Y; Zhang Q; Zhang Y; Cheng Y
    Biomacromolecules; 2021 Mar; 22(3):1297-1304. PubMed ID: 33577294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tough-Hydrogel Reinforced Low-Tortuosity Conductive Networks for Stretchable and High-Performance Supercapacitors.
    Hua M; Wu S; Jin Y; Zhao Y; Yao B; He X
    Adv Mater; 2021 Jul; 33(26):e2100983. PubMed ID: 34060153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skin-Inspired Gels with Toughness, Antifreezing, Conductivity, and Remoldability.
    Chen H; Ren X; Gao G
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28336-28344. PubMed ID: 31304738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatigue fracture of nearly elastic hydrogels.
    Zhang E; Bai R; Morelle XP; Suo Z
    Soft Matter; 2018 May; 14(18):3563-3571. PubMed ID: 29682668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mussel byssus cuticle-inspired ultrastiff and stretchable triple-crosslinked hydrogels.
    Dong C; Fan H; Tang F; Gao X; Feng K; Wang J; Jin Z
    J Mater Chem B; 2021 Jan; 9(2):373-380. PubMed ID: 33283808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Synthesis of Highly Stretchable, Tough, and Photodegradable Hydrogels.
    Fonseca RG; Kuster A; Fernandes PP; Tavakoli M; Pereira P; Fernandes JR; De Bon F; Serra AC; Fonseca AC; Coelho JFJ
    Adv Healthc Mater; 2023 Sep; 12(22):e2300918. PubMed ID: 37133868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions.
    Liu X; Ren Z; Liu F; Zhao L; Ling Q; Gu H
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14612-14622. PubMed ID: 33723988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives.
    Liu K; Wei S; Song L; Liu H; Wang T
    J Agric Food Chem; 2020 Jul; 68(28):7269-7280. PubMed ID: 32574052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels.
    Zhou L; Wang Z; Wu C; Cong Y; Zhang R; Fu J
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51969-51977. PubMed ID: 33147947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chitosan derivative-based double network hydrogels with high strength, high fracture toughness and tunable mechanics.
    Gan S; Xu B; Zhang X; Zhao J; Rong J
    Int J Biol Macromol; 2019 Sep; 137():495-503. PubMed ID: 31276722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tough and fatigue-resistant polymer networks by crack tip softening.
    Liu B; Yin T; Zhu J; Zhao D; Yu H; Qu S; Yang W
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217781120. PubMed ID: 36716369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tough, Recyclable, and Degradable Elastomers for Potential Biomedical Applications.
    Guo X; Liang J; Wang Z; Qin J; Zhang Q; Zhu S; Zhang K; Zhu H
    Adv Mater; 2023 May; 35(20):e2210092. PubMed ID: 36929503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.