BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34962156)

  • 21. Floor-vibration VR: Mitigating Cybersickness Using Whole-body Tactile Stimuli in Highly Realistic Vehicle Driving Experiences.
    Jung S; Li R; McKee R; Whitton MC; Lindeman RW
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2669-2680. PubMed ID: 33760736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual Reality Is Sexist: But It Does Not Have to Be.
    Stanney K; Fidopiastis C; Foster L
    Front Robot AI; 2020; 7():4. PubMed ID: 33501173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating the sensorimotor components of cybersickness.
    Weech S; Varghese JP; Barnett-Cowan M
    J Neurophysiol; 2018 Nov; 120(5):2201-2217. PubMed ID: 30044672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between postural stability and cybersickness: It's complicated - An experimental trial assessing practical implications of cybersickness etiology.
    Litleskare S
    Physiol Behav; 2021 Jul; 236():113422. PubMed ID: 33839164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments.
    Garcia-Agundez A; Reuter C; Becker H; Konrad R; Caserman P; Miede A; Göbel S
    Games Health J; 2019 Dec; 8(6):439-444. PubMed ID: 31295007
    [No Abstract]   [Full Text] [Related]  

  • 27. Emotional and Cognitive Modulation of Cybersickness: The Role of Pain Catastrophizing and Body Awareness.
    Mittelstädt JM; Wacker J; Stelling D
    Hum Factors; 2019 Mar; 61(2):322-336. PubMed ID: 30320515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In too deep? A systematic literature review of fully-immersive virtual reality and cybersickness among older adults.
    Drazich BF; McPherson R; Gorman EF; Chan T; Teleb J; Galik E; Resnick B
    J Am Geriatr Soc; 2023 Dec; 71(12):3906-3915. PubMed ID: 37560978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined pitch and roll and cybersickness in a virtual environment.
    Bonato F; Bubka A; Palmisano S
    Aviat Space Environ Med; 2009 Nov; 80(11):941-5. PubMed ID: 19911517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Visually Induced Motion Sickness from VR Depending on Viewing Patterns, View Movement, and Background Motion.
    Kobayashi N; Yamazaki M; Mizutani R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation.
    Weech S; Wall T; Barnett-Cowan M
    Exp Brain Res; 2020 Feb; 238(2):427-437. PubMed ID: 31938844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cybersickness in the presence of scene rotational movements along different axes.
    Lo WT; So RH
    Appl Ergon; 2001 Feb; 32(1):1-14. PubMed ID: 11209825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Motion sickness in motion: from carsickness to cybersickness].
    Bos JE; van Leeuwen RB; Bruintjes TD
    Ned Tijdschr Geneeskd; 2018; 162():D1760. PubMed ID: 29600919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating cortical activity during cybersickness by fNIRS.
    Yeo SS; Park SY; Yun SH
    Sci Rep; 2024 Apr; 14(1):8093. PubMed ID: 38582769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Visually Induced Motion Sickness Susceptibility Questionnaire (VIMSSQ): Estimating Individual Susceptibility to Motion Sickness-Like Symptoms When Using Visual Devices.
    Keshavarz B; Murovec B; Mohanathas N; Golding JF
    Hum Factors; 2023 Feb; 65(1):107-124. PubMed ID: 33874752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).
    Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM
    Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study of cybersickness during exposure to virtual reality and "classic" motion sickness: are they different?
    Mazloumi Gavgani A; Walker FR; Hodgson DM; Nalivaiko E
    J Appl Physiol (1985); 2018 Dec; 125(6):1670-1680. PubMed ID: 30284516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating Flight Performance and Eye Movement Patterns Using Virtual Reality Flight Simulator.
    Ke L; Zhang Z; Ma Y; Xiao Y; Wu S; Wang X; Liu X; He J
    J Vis Exp; 2023 May; (195):. PubMed ID: 37318264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studying the Effect of Display Type and Viewing Perspective on User Experience in Virtual Reality Exergames.
    Xu W; Liang HN; Zhang Z; Baghaei N
    Games Health J; 2020 Dec; 9(6):405-414. PubMed ID: 32074463
    [No Abstract]   [Full Text] [Related]  

  • 40. Focusing on cybersickness: pervasiveness, latent trajectories, susceptibility, and effects on the virtual reality experience.
    Garrido LE; Frías-Hiciano M; Moreno-Jiménez M; Cruz GN; García-Batista ZE; Guerra-Peña K; Medrano LA
    Virtual Real; 2022; 26(4):1347-1371. PubMed ID: 35250349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.