These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34962296)

  • 1. Analysis of changes of cavity volumes in predefined directions of protein motions and cavity flexibility.
    Barletta GP; Barletta M; Saldaño TE; Fernandez-Alberti S
    J Comput Chem; 2022 Mar; 43(6):391-401. PubMed ID: 34962296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Fluctuations and Cavity Changes Relationship.
    Barletta GP; Fernandez-Alberti S
    J Chem Theory Comput; 2018 Feb; 14(2):998-1008. PubMed ID: 29262685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics fingerprints of active conformers of epidermal growth factor receptor kinase.
    Barletta GP; Hasenahuer MA; Fornasari MS; Parisi G; Fernandez-Alberti S
    J Comput Chem; 2018 Nov; 39(29):2472-2480. PubMed ID: 30298935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.
    Desdouits N; Nilges M; Blondel A
    J Mol Graph Model; 2015 Feb; 55():13-24. PubMed ID: 25424655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty Acid and Retinol-Binding Protein: Unusual Protein Conformational and Cavity Changes Dictated by Ligand Fluctuations.
    Barletta GP; Franchini G; Corsico B; Fernandez-Alberti S
    J Chem Inf Model; 2019 Aug; 59(8):3545-3555. PubMed ID: 31365253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the collective motions of the adenosine A2A receptor as a result of ligand binding using principal component analysis.
    Martínez-Archundia M; Correa-Basurto J; Montaño S; Rosas-Trigueros JL
    J Biomol Struct Dyn; 2019 Nov; 37(18):4685-4700. PubMed ID: 30661450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using normal mode analysis on protein structural models. How far can we go on our predictions?
    Cirauqui Diaz N; Frezza E; Martin J
    Proteins; 2021 May; 89(5):531-543. PubMed ID: 33349977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Conformational Sampling of Collective Motions of Proteins with Principal Component Analysis-Based Parallel Cascade Selection Molecular Dynamics.
    Yasuda T; Shigeta Y; Harada R
    J Chem Inf Model; 2020 Aug; 60(8):4021-4029. PubMed ID: 32786508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
    Skjaerven L; Martinez A; Reuter N
    Proteins; 2011 Jan; 79(1):232-43. PubMed ID: 21058295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural networks for efficient clustering of conformational ensembles and their potential for medicinal chemistry.
    Pandini A; Fraccalvieri D; Bonati L
    Curr Top Med Chem; 2013; 13(5):642-51. PubMed ID: 23548025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.
    Pachov DV; van den Bedem H
    PLoS Comput Biol; 2015 Jul; 11(7):e1004361. PubMed ID: 26218073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions.
    Oliwa T; Shen Y
    Bioinformatics; 2015 Jun; 31(12):i151-60. PubMed ID: 26072477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models.
    Sankar K; Mishra SK; Jernigan RL
    J Phys Chem B; 2018 May; 122(21):5409-5417. PubMed ID: 29376347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.
    De Paris R; Quevedo CV; Ruiz DD; Norberto de Souza O
    PLoS One; 2015; 10(7):e0133172. PubMed ID: 26218832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase.
    Li G; Cui Q
    Biophys J; 2004 Feb; 86(2):743-63. PubMed ID: 14747312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational generation inhibitor-bound conformers of p38 MAP kinase and comparison with experiments.
    Bakan A; Bahar I
    Pac Symp Biocomput; 2011; ():181-92. PubMed ID: 21121046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility.
    Ravikumar A; de Brevern AG; Srinivasan N
    J Phys Chem B; 2021 Mar; 125(10):2597-2606. PubMed ID: 33666418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.