These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 34962611)

  • 1. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects.
    Singha DL; Das D; Sarki YN; Chowdhury N; Sharma M; Maharana J; Chikkaputtaiah C
    Planta; 2021 Dec; 255(1):28. PubMed ID: 34962611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives.
    Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects.
    Salava H; Thula S; Mohan V; Kumar R; Maghuly F
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome editing of polyploid crops: prospects, achievements and bottlenecks.
    Schaart JG; van de Wiel CCM; Smulders MJM
    Transgenic Res; 2021 Aug; 30(4):337-351. PubMed ID: 33846956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism.
    Kumari D; Prasad BD; Dwivedi P; Hidangmayum A; Sahni S
    Mol Biol Rep; 2022 Dec; 49(12):11587-11600. PubMed ID: 36104588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.