These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 34962769)
1. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products. Toplak M; Teufel R Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769 [TBL] [Abstract][Full Text] [Related]
3. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases. Toplak M; Matthews A; Teufel R Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998 [TBL] [Abstract][Full Text] [Related]
4. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide. Saleem-Batcha R; Teufel R Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor. Teufel R Methods Enzymol; 2018; 604():523-540. PubMed ID: 29779666 [TBL] [Abstract][Full Text] [Related]
8. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Ballou DP; Entsch B; Cole LJ Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251 [TBL] [Abstract][Full Text] [Related]
9. Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor. Teufel R; Stull F; Meehan MJ; Michaudel Q; Dorrestein PC; Palfey B; Moore BS J Am Chem Soc; 2015 Jul; 137(25):8078-85. PubMed ID: 26067765 [TBL] [Abstract][Full Text] [Related]
10. Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates. Saleem-Batcha R; Teufel R Methods Enzymol; 2019; 620():349-363. PubMed ID: 31072493 [TBL] [Abstract][Full Text] [Related]
11. Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase. Sobrado P; Tanner JJ Arch Biochem Biophys; 2017 Oct; 632():59-65. PubMed ID: 28652025 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group. Sucharitakul J; Wongnate T; Chaiyen P J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569 [TBL] [Abstract][Full Text] [Related]
13. Dynamic association of flavin cofactors to regulate flavoprotein function. Schnerwitzki D; Vabulas RM IUBMB Life; 2022 Jul; 74(7):645-654. PubMed ID: 35015339 [TBL] [Abstract][Full Text] [Related]
14. Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity. Lin KH; Lyu SY; Yeh HW; Li YS; Hsu NS; Huang CM; Wang YL; Shih HW; Wang ZC; Wu CJ; Li TL Protein Sci; 2020 Jul; 29(7):1655-1666. PubMed ID: 32362037 [TBL] [Abstract][Full Text] [Related]
16. Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. Deng Y; Zhou Q; Wu Y; Chen X; Zhong F Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269764 [TBL] [Abstract][Full Text] [Related]
17. New frontiers in flavin-dependent monooxygenases. Reis RAG; Li H; Johnson M; Sobrado P Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580 [TBL] [Abstract][Full Text] [Related]
18. Flavin-dependent N-hydroxylating enzymes: distribution and application. Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128 [TBL] [Abstract][Full Text] [Related]