These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 34962769)

  • 1. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products.
    Toplak M; Teufel R
    Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-transfer reactions by enzymatic flavin-N
    Teufel R
    Curr Opin Chem Biol; 2024 Jun; 80():102464. PubMed ID: 38739969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases.
    Toplak M; Matthews A; Teufel R
    Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.
    Saleem-Batcha R; Teufel R
    Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor.
    Teufel R
    Methods Enzymol; 2018; 604():523-540. PubMed ID: 29779666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement.
    Teufel R; Miyanaga A; Michaudel Q; Stull F; Louie G; Noel JP; Baran PS; Palfey B; Moore BS
    Nature; 2013 Nov; 503(7477):552-556. PubMed ID: 24162851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.
    Teufel R
    Arch Biochem Biophys; 2017 Oct; 632():20-27. PubMed ID: 28619619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor.
    Teufel R; Stull F; Meehan MJ; Michaudel Q; Dorrestein PC; Palfey B; Moore BS
    J Am Chem Soc; 2015 Jul; 137(25):8078-85. PubMed ID: 26067765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates.
    Saleem-Batcha R; Teufel R
    Methods Enzymol; 2019; 620():349-363. PubMed ID: 31072493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase.
    Sobrado P; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():59-65. PubMed ID: 28652025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.
    Sucharitakul J; Wongnate T; Chaiyen P
    J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic association of flavin cofactors to regulate flavoprotein function.
    Schnerwitzki D; Vabulas RM
    IUBMB Life; 2022 Jul; 74(7):645-654. PubMed ID: 35015339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity.
    Lin KH; Lyu SY; Yeh HW; Li YS; Hsu NS; Huang CM; Wang YL; Shih HW; Wang ZC; Wu CJ; Li TL
    Protein Sci; 2020 Jul; 29(7):1655-1666. PubMed ID: 32362037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavoenzyme catalysed oxidation of amines: roles for flavin and protein-based radicals.
    Rigby SE; Basran J; Combe JP; Mohsen AW; Toogood H; van Thiel A; Sutcliffe MJ; Leys D; Munro AW; Scrutton NS
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):754-7. PubMed ID: 16042592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis.
    Deng Y; Zhou Q; Wu Y; Chen X; Zhong F
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin-dependent N-hydroxylating enzymes: distribution and application.
    Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative Carbon Backbone Rearrangement in Rishirilide Biosynthesis.
    Tsypik O; Makitrynskyy R; Frensch B; Zechel DL; Paululat T; Teufel R; Bechthold A
    J Am Chem Soc; 2020 Apr; 142(13):5913-5917. PubMed ID: 32182053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual flavoenzyme catalysis in marine bacteria.
    Teufel R; Agarwal V; Moore BS
    Curr Opin Chem Biol; 2016 Apr; 31():31-9. PubMed ID: 26803009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.