BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 34963092)

  • 1. A CNN-transformer hybrid approach for decoding visual neural activity into text.
    Zhang J; Li C; Liu G; Min M; Wang C; Li J; Wang Y; Yan H; Zuo Z; Huang W; Chen H
    Comput Methods Programs Biomed; 2022 Feb; 214():106586. PubMed ID: 34963092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Semantic Decoding of Visual Perception with Graph Neural Networks.
    Li R; Li J; Wang C; Liu H; Liu T; Wang X; Zou T; Huang W; Yan H; Chen H
    Int J Neural Syst; 2024 Apr; 34(4):2450016. PubMed ID: 38372016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Encoding and Decoding With Distributed Sentence Representations.
    Sun J; Wang S; Zhang J; Zong C
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):589-603. PubMed ID: 33052868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual-channel language decoding from brain activity with progressive transfer training.
    Huang W; Yan H; Cheng K; Wang Y; Wang C; Li J; Li C; Li C; Zuo Z; Chen H
    Hum Brain Mapp; 2021 Oct; 42(15):5089-5100. PubMed ID: 34314088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex.
    Han K; Wen H; Shi J; Lu KH; Zhang Y; Fu D; Liu Z
    Neuroimage; 2019 Sep; 198():125-136. PubMed ID: 31103784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural decoding algorithm that generates language from visual activity evoked by natural images.
    Huang W; Yan H; Cheng K; Wang C; Li J; Wang Y; Li C; Li C; Li Y; Zuo Z; Chen H
    Neural Netw; 2021 Dec; 144():90-100. PubMed ID: 34478941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.
    Wen H; Shi J; Zhang Y; Lu KH; Cao J; Liu Z
    Cereb Cortex; 2018 Dec; 28(12):4136-4160. PubMed ID: 29059288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of natural visual scenes from neural spikes with deep neural networks.
    Zhang Y; Jia S; Zheng Y; Yu Z; Tian Y; Ma S; Huang T; Liu JK
    Neural Netw; 2020 May; 125():19-30. PubMed ID: 32070853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network.
    Zhang C; Qiao K; Wang L; Tong L; Zeng Y; Yan B
    Front Hum Neurosci; 2018; 12():242. PubMed ID: 29988371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gated Transformer for Decoding Human Brain EEG Signals.
    Tao Y; Sun T; Muhamed A; Genc S; Jackson D; Arsanjani A; Yaddanapudi S; Li L; Kumar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():125-130. PubMed ID: 34891254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans.
    Lee J; Jung M; Lustig N; Lee JH
    Hum Brain Mapp; 2023 Apr; 44(5):2018-2038. PubMed ID: 36637109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'When' and 'what' did you see? A novel fMRI-based visual decoding framework.
    Wang C; Yan H; Huang W; Li J; Yang J; Li R; Zhang L; Li L; Zhang J; Zuo Z; Chen H
    J Neural Eng; 2020 Oct; 17(5):056013. PubMed ID: 32906091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing controllable faces from brain activity with hierarchical multiview representations.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neural Netw; 2023 Sep; 166():487-500. PubMed ID: 37574622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception-to-Image: Reconstructing Natural Images from the Brain Activity of Visual Perception.
    Huang W; Yan H; Wang C; Li J; Zuo Z; Zhang J; Shen Z; Chen H
    Ann Biomed Eng; 2020 Sep; 48(9):2323-2332. PubMed ID: 32285343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss.
    Nie Y; Sommella P; Carratù M; O'Nils M; Lundgren J
    Diagnostics (Basel); 2022 Dec; 13(1):. PubMed ID: 36611363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding Brain Activity Features to Recognize Distorted Objects.
    Chang Y; Saritac M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5776-5779. PubMed ID: 34892432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.