These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 34963455)

  • 1. ECG signal classification based on deep CNN and BiLSTM.
    Cheng J; Zou Q; Zhao Y
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):365. PubMed ID: 34963455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN.
    Islam MS; Hasan KF; Sultana S; Uddin S; Lio' P; Quinn JMW; Moni MA
    Neural Netw; 2023 May; 162():271-287. PubMed ID: 36921434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms.
    Sodmann P; Vollmer M; Nath N; Kaderali L
    Physiol Meas; 2018 Oct; 39(10):104005. PubMed ID: 30235165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG.
    Plesinger F; Nejedly P; Viscor I; Halamek J; Jurak P
    Physiol Meas; 2018 Sep; 39(9):094002. PubMed ID: 30102251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform.
    Toma TI; Choi S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ECG Signal Classification Method Based on Dilated Causal Convolution.
    Ma H; Chen C; Zhu Q; Yuan H; Chen L; Shu M
    Comput Math Methods Med; 2021; 2021():6627939. PubMed ID: 33603825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals.
    Radhakrishnan T; Karhade J; Ghosh SK; Muduli PR; Tripathy RK; Acharya UR
    Comput Biol Med; 2021 Oct; 137():104783. PubMed ID: 34481184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings.
    Zhang P; Ma C; Sun Y; Fan G; Song F; Feng Y; Zhang G
    Comput Biol Med; 2021 Dec; 139():104880. PubMed ID: 34700255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of Electrocardiogram Heartbeat by CNN and GRU.
    Yao G; Mao X; Li N; Xu H; Xu X; Jiao Y; Ni J
    Comput Math Methods Med; 2021; 2021():6534942. PubMed ID: 34497664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Convolutional Neural Network Based Approach for Automated Heartbeat Classification.
    Wang H; Shi H; Chen X; Zhao L; Huang Y; Liu C
    J Med Syst; 2019 Dec; 44(2):35. PubMed ID: 31853698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss.
    Romdhane TF; Alhichri H; Ouni R; Atri M
    Comput Biol Med; 2020 Aug; 123():103866. PubMed ID: 32658786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of arrhythmia in 12-lead varied-length ECG using multi-branch signal fusion network.
    Dong Y; Cai W; Qiu L; Guo Y; Chen Y; Zhang M; Wang D; Zhang H; Wang L
    Physiol Meas; 2022 Oct; 43(10):. PubMed ID: 35705072
    [No Abstract]   [Full Text] [Related]  

  • 13. Analyzing single-lead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation.
    Parvaneh S; Rubin J; Rahman A; Conroy B; Babaeizadeh S
    Physiol Meas; 2018 Aug; 39(8):084003. PubMed ID: 30044235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal.
    Erdenebayar U; Kim H; Park JU; Kang D; Lee KJ
    J Korean Med Sci; 2019 Feb; 34(7):e64. PubMed ID: 30804732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM.
    Liu F; Li H; Wu T; Lin H; Lin C; Han G
    ISA Trans; 2023 Jul; 138():397-407. PubMed ID: 36898911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic 12-Leading Electrocardiogram Classification Network with Deformable Convolution.
    Xie Y; Qin L; Tan H; Li X; Liu B; Wang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():882-885. PubMed ID: 34891431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.
    Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y
    Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECG quality assessment based on hand-crafted statistics and deep-learned S-transform spectrogram features.
    Liu G; Han X; Tian L; Zhou W; Liu H
    Comput Methods Programs Biomed; 2021 Sep; 208():106269. PubMed ID: 34298474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Automatic Coronary Microvascular Dysfunction Classification Method Based on Hybrid ECG Features and Expert Features.
    Jiang M; Bian F; Zhang J; Pu Z; Li H; Zhang Y; Chu Y; Fan Y; Jiang J
    IEEE J Biomed Health Inform; 2024 Sep; 28(9):5103-5112. PubMed ID: 38923474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.