These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 34963580)

  • 1. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant.
    Ramirez Arenas L; Ramseier Gentile S; Zimmermann S; Stoll S
    Sci Total Environ; 2022 Mar; 813():152623. PubMed ID: 34963580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process.
    Ramirez Arenas L; Ramseier Gentile S; Zimmermann S; Stoll S
    Sci Total Environ; 2021 Oct; 791():148175. PubMed ID: 34118680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoplastics removal during drinking water treatment: Laboratory- and pilot-scale experiments and modeling.
    Pulido-Reyes G; Magherini L; Bianco C; Sethi R; von Gunten U; Kaegi R; Mitrano DM
    J Hazard Mater; 2022 Aug; 436():129011. PubMed ID: 35643007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal efficiency of micro- and nanoplastics (180 nm-125 μm) during drinking water treatment.
    Zhang Y; Diehl A; Lewandowski A; Gopalakrishnan K; Baker T
    Sci Total Environ; 2020 Jun; 720():137383. PubMed ID: 32325555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of nanoplastics in water treatment processes: A review.
    Keerthana Devi M; Karmegam N; Manikandan S; Subbaiya R; Song H; Kwon EE; Sarkar B; Bolan N; Kim W; Rinklebe J; Govarthanan M
    Sci Total Environ; 2022 Nov; 845():157168. PubMed ID: 35817120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contamination and removal efficiency of microplastics and synthetic fibres in a conventional drinking water treatment plant in Geneva, Switzerland.
    Negrete Velasco A; Ramseier Gentile S; Zimmermann S; Le Coustumer P; Stoll S
    Sci Total Environ; 2023 Jul; 880():163270. PubMed ID: 37023809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport behavior of nanoplastics in activated carbon column.
    Ji H; Liu Z; Jiang W
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26256-26269. PubMed ID: 36355238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmentation of microplastics in the drinking water treatment process - A case study in Yangtze River region, China.
    Wu J; Zhang Y; Tang Y
    Sci Total Environ; 2022 Feb; 806(Pt 1):150545. PubMed ID: 34582875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantification of nanoplastics (20-1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS.
    Li Y; Zhang C; Tian Z; Cai X; Guan B
    J Hazard Mater; 2024 Feb; 463():132933. PubMed ID: 37951177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastic removal in conventional drinking water treatment processes: Performance, mechanism, and potential risk.
    Na SH; Kim MJ; Kim JT; Jeong S; Lee S; Chung J; Kim EJ
    Water Res; 2021 Sep; 202():117417. PubMed ID: 34271456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microplastics removal efficiency of drinking water treatment plant with pulse clarifier.
    Sarkar DJ; Das Sarkar S; Das BK; Praharaj JK; Mahajan DK; Purokait B; Mohanty TR; Mohanty D; Gogoi P; Kumar V S; Behera BK; Manna RK; Samanta S
    J Hazard Mater; 2021 Jul; 413():125347. PubMed ID: 33601144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research Progress on Colloid Pump Effect of Micro- and Nanoplastics in Drinking Water].
    Zhao WG; Zhang XQ; Tian YM; Zhao P
    Huan Jing Ke Xue; 2023 Oct; 44(10):5861-5869. PubMed ID: 37827801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conventional and biological treatment for the removal of microplastics from drinking water.
    Cherniak SL; Almuhtaram H; McKie MJ; Hermabessiere L; Yuan C; Rochman CM; Andrews RC
    Chemosphere; 2022 Feb; 288(Pt 2):132587. PubMed ID: 34662634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment.
    Pivokonský M; Pivokonská L; Novotná K; Čermáková L; Klimtová M
    Sci Total Environ; 2020 Nov; 741():140236. PubMed ID: 32603938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation.
    Gong Y; Bai Y; Zhao D; Wang Q
    Water Res; 2022 Jan; 208():117884. PubMed ID: 34837810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granular limestone amended sand filters for enhanced removal of nanoplastics from water: Performance and mechanisms.
    Li X; Zhang Y; Xu H; Sun Y; Gao B; Wu J
    Water Res; 2023 Feb; 229():119443. PubMed ID: 36509035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP).
    Wang Z; Lin T; Chen W
    Sci Total Environ; 2020 Jan; 700():134520. PubMed ID: 31669914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and fate of microplastics from a water source to two different drinking water treatment plants in a megacity in eastern China.
    Han Z; Jiang J; Xia J; Yan C; Cui C
    Environ Pollut; 2024 Apr; 346():123546. PubMed ID: 38369092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of polystyrene nanoplastics from water by CuNi carbon material: The role of adsorption.
    Zhou G; Huang X; Xu H; Wang Q; Wang M; Wang Y; Li Q; Zhang Y; Ye Q; Zhang J
    Sci Total Environ; 2022 May; 820():153190. PubMed ID: 35051471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coagulation of TiO
    Ramirez Arenas L; Ramseier Gentile S; Zimmermann S; Stoll S
    Water Environ Res; 2020 Aug; 92(8):1184-1194. PubMed ID: 32080946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.