These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 34964192)
1. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Zhang C; Lu X; Wang Z; Xia H Macromol Rapid Commun; 2022 Mar; 43(5):e2100768. PubMed ID: 34964192 [TBL] [Abstract][Full Text] [Related]
2. Recent progress in dynamic covalent chemistries for liquid crystal elastomers. Wang Z; Cai S J Mater Chem B; 2020 Aug; 8(31):6610-6623. PubMed ID: 32555841 [TBL] [Abstract][Full Text] [Related]
3. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. Chen Y; Chen C; Rehman HU; Zheng X; Li H; Liu H; Hedenqvist MS Molecules; 2020 Sep; 25(18):. PubMed ID: 32947872 [TBL] [Abstract][Full Text] [Related]
4. A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials. Wen Z; Yang K; Raquez JM Molecules; 2020 Mar; 25(5):. PubMed ID: 32164147 [TBL] [Abstract][Full Text] [Related]
5. Structure-induced Intelligence of Liquid Crystal Elastomers. Nie ZZ; Wang M; Yang H Chemistry; 2023 Jul; 29(38):e202301027. PubMed ID: 37129950 [TBL] [Abstract][Full Text] [Related]
6. Functional Liquid Crystal Elastomers Based on Dynamic Covalent Chemistry. Valenzuela C; Chen Y; Wang L; Feng W Chemistry; 2022 Dec; 28(70):e202201957. PubMed ID: 36046951 [TBL] [Abstract][Full Text] [Related]
7. Transparent and Self-Healing Elastomers for Reconfigurable 3D Materials. Yimyai T; Pena-Francesch A; Crespy D Macromol Rapid Commun; 2022 Dec; 43(23):e2200554. PubMed ID: 35996274 [TBL] [Abstract][Full Text] [Related]
9. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Guan Z; Wang L; Bae J Mater Horiz; 2022 Jul; 9(7):1825-1849. PubMed ID: 35504034 [TBL] [Abstract][Full Text] [Related]
10. Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. Samanta S; Kim S; Saito T; Sokolov AP J Phys Chem B; 2021 Aug; 125(33):9389-9401. PubMed ID: 34324809 [TBL] [Abstract][Full Text] [Related]
11. High-Strength, Large-Deformation, Dual Cross-Linking Network Liquid Crystal Elastomers Based on Quadruple Hydrogen Bonds. Li M; Dai S; Dong X; Jiang Y; Ge J; Xu Y; Yuan N; Ding J Langmuir; 2022 Feb; 38(4):1560-1566. PubMed ID: 35061400 [TBL] [Abstract][Full Text] [Related]
12. Tough and Photo-Plastic Liquid Crystal Elastomer with a 2-Fold Dynamic Linker for Artificial Muscles. Wu Y; Pei D; Wei F; Liu P; Li M; Li T; Li C ACS Appl Mater Interfaces; 2023 Sep; 15(37):44205-44211. PubMed ID: 37672356 [TBL] [Abstract][Full Text] [Related]
13. Liquid crystalline elastomers as actuators and sensors. Ohm C; Brehmer M; Zentel R Adv Mater; 2010 Aug; 22(31):3366-87. PubMed ID: 20512812 [TBL] [Abstract][Full Text] [Related]
15. Using Synergistic Multiple Dynamic Bonds to Construct Polymers with Engineered Properties. Jiang Z; Bhaskaran A; Aitken HM; Shackleford ICG; Connal LA Macromol Rapid Commun; 2019 May; 40(10):e1900038. PubMed ID: 30977952 [TBL] [Abstract][Full Text] [Related]
16. Shape memory materials for electrically-powered soft machines. Huang X; Ford M; Patterson ZJ; Zarepoor M; Pan C; Majidi C J Mater Chem B; 2020 Jun; 8(21):4539-4551. PubMed ID: 32373836 [TBL] [Abstract][Full Text] [Related]
17. Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Sun D; Zhang J; Li H; Shi Z; Meng Q; Liu S; Chen J; Liu X Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34204168 [TBL] [Abstract][Full Text] [Related]
18. Skin-Inspired Electronics: An Emerging Paradigm. Wang S; Oh JY; Xu J; Tran H; Bao Z Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379 [TBL] [Abstract][Full Text] [Related]