BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34964229)

  • 21. pH- and Redox-Responsive Pickering Emulsions Based on Cellulose Nanocrystal Surfactants.
    Yang Y; Sun H; Wang M; Li M; Zhang Z; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202218440. PubMed ID: 36781384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets.
    Toor A; Helms BA; Russell TP
    Nano Lett; 2017 May; 17(5):3119-3125. PubMed ID: 28358213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants.
    Liu X; Shi S; Li Y; Forth J; Wang D; Russell TP
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12594-12598. PubMed ID: 28795521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface.
    Toor A; Forth J; Bochner de Araujo S; Merola MC; Jiang Y; Liu X; Chai Y; Hou H; Ashby PD; Fuller GG; Russell TP
    Langmuir; 2019 Oct; 35(41):13340-13350. PubMed ID: 31536356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition in Dynamics as Nanoparticles Jam at the Liquid/Liquid Interface.
    Cui M; Miesch C; Kosif I; Nie H; Kim PY; Kim H; Emrick T; Russell TP
    Nano Lett; 2017 Nov; 17(11):6855-6862. PubMed ID: 29048914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticle assembly and transport at liquid-liquid interfaces.
    Lin Y; Skaff H; Emrick T; Dinsmore AD; Russell TP
    Science; 2003 Jan; 299(5604):226-9. PubMed ID: 12522244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic-Driven Dynamic Jamming of 2D Nanoparticles at Interfaces for Controlled Molecular Diffusion.
    Luo J; Zeng M; Peng B; Tang Y; Zhang L; Wang P; He L; Huang D; Wang L; Wang X; Chen M; Lei S; Lin P; Chen Y; Cheng Z
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11752-11757. PubMed ID: 29987910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimuli-responsive nanoparticle self-assembly at complex fluid interfaces: a new insight into dynamic surface chemistry.
    Heo J; Seo S; Yun H; Ku KH
    Nanoscale; 2024 Feb; 16(8):3951-3968. PubMed ID: 38319675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle assembly at fluid interfaces: structure and dynamics.
    Lin Y; Böker A; Skaff H; Cookson D; Dinsmore AD; Emrick T; Russell TP
    Langmuir; 2005 Jan; 21(1):191-4. PubMed ID: 15620302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial Assembly and Jamming of Polyelectrolyte Surfactants: A Simple Route To Print Liquids in Low-Viscosity Solution.
    Xu R; Liu T; Sun H; Wang B; Shi S; Russell TP
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18116-18122. PubMed ID: 32091190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of nanoparticles at interfaces.
    Böker A; He J; Emrick T; Russell TP
    Soft Matter; 2007 Sep; 3(10):1231-1248. PubMed ID: 32900090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants.
    Tian C; Feng J; Prud'homme RK
    J Colloid Interface Sci; 2020 Sep; 575():416-424. PubMed ID: 32388288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Assembly of MXene-Surfactants at Liquid-Liquid Interfaces: From Structured Liquids to 3D Aerogels.
    Shi S; Qian B; Wu X; Sun H; Wang H; Zhang HB; Yu ZZ; Russell TP
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18171-18176. PubMed ID: 31591756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the Mechanism of Targeted Delivery of Molecular Surfactants Loaded into Nanoparticles after Their Assembly at Oil-Water Interfaces.
    Hammami MA; Kouloumpis A; Qi G; Alsmaeil AW; Aldakkan B; Kanj MY; Giannelis EP
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6113-6122. PubMed ID: 36692039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial Assembly and Jamming Behavior of Polymeric Janus Particles at Liquid Interfaces.
    Jiang Y; Löbling TI; Huang C; Sun Z; Müller AHE; Russell TP
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33327-33332. PubMed ID: 28863260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Aggregation to Chaperone Nanoparticles Across Fluid Interfaces.
    Fu Y; Zhao S; Fan Y; Ho YYL; Wang Y; Lei D; Gu P; Russell TP; Chai Y
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202308853. PubMed ID: 37503554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticle Surfactants at Complex Emulsion Interfaces.
    Luo Y; Li K; Luo J; Wen Y; Shi S
    Small; 2024 May; ():e2401377. PubMed ID: 38778735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles.
    Cui M; Emrick T; Russell TP
    Science; 2013 Oct; 342(6157):460-3. PubMed ID: 24159042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-oil Constructs Stabilized by Cellulose Nanocrystal Surfactants.
    Chen J; Sun S; Wang Y; Feng W; Luo Y; Li M; Shi S
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27391-27398. PubMed ID: 37247323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature driven assembly of like-charged nanoparticles at non-planar liquid-liquid or gel-air interfaces.
    Zhuang Q; Walker DA; Browne KP; Kowalczyk B; Beniah G; Grzybowski BA
    Nanoscale; 2014 May; 6(9):4475-9. PubMed ID: 24488254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.