These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34964294)
41. Characterization of endo-1,3-1,4-β-glucanases in GH family 12 from Magnaporthe oryzae. Takeda T; Takahashi M; Nakanishi-Masuno T; Nakano Y; Saitoh H; Hirabuchi A; Fujisawa S; Terauchi R Appl Microbiol Biotechnol; 2010 Nov; 88(5):1113-23. PubMed ID: 20680265 [TBL] [Abstract][Full Text] [Related]
42. Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. Patkar RN; Xue YK; Shui G; Wenk MR; Naqvi NI PLoS Pathog; 2012; 8(8):e1002888. PubMed ID: 22927822 [TBL] [Abstract][Full Text] [Related]
43. The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae. Wang J; Huang Z; Huang P; Wang Q; Li Y; Liu XH; Lin FC; Lu J Microbiol Spectr; 2022 Oct; 10(5):e0102122. PubMed ID: 36036638 [TBL] [Abstract][Full Text] [Related]
44. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants. Chiapello H; Mallet L; Guérin C; Aguileta G; Amselem J; Kroj T; Ortega-Abboud E; Lebrun MH; Henrissat B; Gendrault A; Rodolphe F; Tharreau D; Fournier E Genome Biol Evol; 2015 Oct; 7(10):2896-912. PubMed ID: 26454013 [TBL] [Abstract][Full Text] [Related]
45. Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Kluge M; Ullrich R; Dolge C; Scheibner K; Hofrichter M Appl Microbiol Biotechnol; 2009 Jan; 81(6):1071-6. PubMed ID: 18815784 [TBL] [Abstract][Full Text] [Related]
46. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Peter S; Kinne M; Ullrich R; Kayser G; Hofrichter M Enzyme Microb Technol; 2013 May; 52(6-7):370-6. PubMed ID: 23608506 [TBL] [Abstract][Full Text] [Related]
47. [Transcriptome analysis of early interaction between rice and Magnaporthe oryzae using next-generation sequencing technology]. Li XL; Bai B; Wu J; Deng QY; Zhou B Yi Chuan; 2012 Jan; 34(1):102-12. PubMed ID: 22306879 [TBL] [Abstract][Full Text] [Related]
48. Multistep Biooxidation of 5-(Hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid with H Swoboda A; Zwölfer S; Duhović Z; Bürgler M; Ebner K; Glieder A; Kroutil W ChemSusChem; 2024 Jun; 17(11):e202400156. PubMed ID: 38568785 [TBL] [Abstract][Full Text] [Related]
49. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Rehmeyer C; Li W; Kusaba M; Kim YS; Brown D; Staben C; Dean R; Farman M Nucleic Acids Res; 2006; 34(17):4685-701. PubMed ID: 16963777 [TBL] [Abstract][Full Text] [Related]
50. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Gladieux P; Condon B; Ravel S; Soanes D; Maciel JLN; Nhani A; Chen L; Terauchi R; Lebrun MH; Tharreau D; Mitchell T; Pedley KF; Valent B; Talbot NJ; Farman M; Fournier E mBio; 2018 Feb; 9(1):. PubMed ID: 29487238 [TBL] [Abstract][Full Text] [Related]
51. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Babot ED; del Río JC; Kalum L; Martínez AT; Gutiérrez A Biotechnol Bioeng; 2013 Sep; 110(9):2323-32. PubMed ID: 23519689 [TBL] [Abstract][Full Text] [Related]
52. Valorization of bioethanol by-products to produce unspecific peroxygenase with Agrocybe aegerita: Technological and proteomic perspectives. González-Rodríguez S; Trueba-Santiso A; Lu-Chau TA; Moreira MT; Eibes G N Biotechnol; 2023 Sep; 76():63-71. PubMed ID: 37169331 [TBL] [Abstract][Full Text] [Related]
53. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Pan Y; Pan R; Tan L; Zhang Z; Guo M Curr Genet; 2019 Feb; 65(1):223-239. PubMed ID: 29946987 [TBL] [Abstract][Full Text] [Related]
54. Vesicle-based cell-free synthesis of short and long unspecific peroxygenases. Walter RM; Zemella A; Schramm M; Kiebist J; Kubick S Front Bioeng Biotechnol; 2022; 10():964396. PubMed ID: 36394036 [TBL] [Abstract][Full Text] [Related]
55. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum. Maeda K; Izawa M; Nakajima Y; Jin Q; Hirose T; Nakamura T; Koshino H; Kanamaru K; Ohsato S; Kamakura T; Kobayashi T; Yoshida M; Kimura M Lett Appl Microbiol; 2017 Nov; 65(5):446-452. PubMed ID: 28862744 [TBL] [Abstract][Full Text] [Related]
56. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. Gupta DK; Rühl M; Mishra B; Kleofas V; Hofrichter M; Herzog R; Pecyna MJ; Sharma R; Kellner H; Hennicke F; Thines M BMC Genomics; 2018 Jan; 19(1):48. PubMed ID: 29334897 [TBL] [Abstract][Full Text] [Related]
57. Synthesis of 1-Naphthol by a Natural Peroxygenase Engineered by Directed Evolution. Molina-Espeja P; Cañellas M; Plou FJ; Hofrichter M; Lucas F; Guallar V; Alcalde M Chembiochem; 2016 Feb; 17(4):341-9. PubMed ID: 26677801 [TBL] [Abstract][Full Text] [Related]
58. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. Peter S; Kinne M; Wang X; Ullrich R; Kayser G; Groves JT; Hofrichter M FEBS J; 2011 Oct; 278(19):3667-75. PubMed ID: 21812933 [TBL] [Abstract][Full Text] [Related]
59. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Zhang S; Liang M; Naqvi NI; Lin C; Qian W; Zhang LH; Deng YZ Autophagy; 2017 Aug; 13(8):1318-1330. PubMed ID: 28594263 [TBL] [Abstract][Full Text] [Related]
60. The Role of Cell Wall Degrading Enzymes in Pathogenesis of Magnaporthe oryzae. Quoc NB; Chau NNB Curr Protein Pept Sci; 2017; 18(10):1019-1034. PubMed ID: 27526928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]