These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34965082)

  • 1. Interface Modification and Halide Substitution To Achieve High Ionic Conductivity in LiBH
    Hu L; Wang H; Liu Y; Fang F; Yuan B; Hu R
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1260-1269. PubMed ID: 34965082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultra-Stable Electrode-Solid Electrolyte Composite for High-Performance All-Solid-State Li-Ion Batteries.
    Huang Y; Gao P; Zhang T; Zhang X; Xia G; Fang F; Sun D; Guo Z; Yu X
    Small; 2023 Jun; 19(26):e2207210. PubMed ID: 36942849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Chloride Ion Substitution on Lithium-Ion Conductivity and Electrochemical Stability in a Dual-Halogen Solid-State Electrolyte.
    Umeshbabu E; Maddukuri S; Hu Y; Fichtner M; Munnangi AR
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25448-25456. PubMed ID: 35623091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Formed Li-B-H Complex with High Li-Ion Conductivity as a Potential Solid Electrolyte for Li Batteries.
    Zhu M; Pang Y; Lu F; Shi X; Yang J; Zheng S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14136-14141. PubMed ID: 30907580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stable Halide-Electrolyte-Based All-Solid-State Li-Se Batteries.
    Li X; Liang J; Kim JT; Fu J; Duan H; Chen N; Li R; Zhao S; Wang J; Huang H; Sun X
    Adv Mater; 2022 May; 34(20):e2200856. PubMed ID: 35365923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte.
    Li X; Liang J; Chen N; Luo J; Adair KR; Wang C; Banis MN; Sham TK; Zhang L; Zhao S; Lu S; Huang H; Li R; Sun X
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16427-16432. PubMed ID: 31476261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li
    Yang Q; Lu F; Liu Y; Zhang Y; Wang X; Pang Y; Zheng S
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium migration pathways at the composite interface of LiBH
    Liu Z; Xiang M; Zhang Y; Shao H; Zhu Y; Guo X; Li L; Wang H; Liu W
    Phys Chem Chem Phys; 2020 Feb; 22(7):4096-4105. PubMed ID: 32031546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Superionic Conduction in BH
    Jang YJ; Seo H; Lee YS; Kang S; Cho W; Cho YW; Kim JH
    Adv Sci (Weinh); 2023 Feb; 10(5):e2204942. PubMed ID: 36507619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Lithium Ionic Conductivity in Complex Hydride-Sulfide Electrolytes by Double Anions Substitution.
    Zhang T; Shao Y; Zhang X; Huang Y; Wang S; Zhou W; Li P; Xia G; Yu X
    Small Methods; 2021 Aug; 5(8):e2100609. PubMed ID: 34927863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-Temperature Solid-State Lithium-Ion Battery Using a LiBH
    Gulino V; Brighi M; Murgia F; Ngene P; de Jongh P; Černý R; Baricco M
    ACS Appl Energy Mater; 2021 Feb; 4(2):1228-1236. PubMed ID: 33644698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into the Effects of Zr Substitution and Carbon Additive on Li
    Shao Q; Yan C; Gao M; Du W; Chen J; Yang Y; Gan J; Wu Z; Sun W; Jiang Y; Liu Y; Gao M; Pan H
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8095-8105. PubMed ID: 35113524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface-enhanced Li ion conduction in a LiBH4-SiO2 solid electrolyte.
    Choi YS; Lee YS; Oh KH; Cho YW
    Phys Chem Chem Phys; 2016 Aug; 18(32):22540-7. PubMed ID: 27468702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Stable Li
    Wang H; Li Y; Tang Y; Ye D; He T; Zhao H; Zhang J
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5504-5511. PubMed ID: 36662742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes.
    Cuan J; Zhou Y; Zhou T; Ling S; Rui K; Guo Z; Liu H; Yu X
    Adv Mater; 2019 Jan; 31(1):e1803533. PubMed ID: 30368930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li-Ion Conductivity Enhancement of LiBH
    Zhao W; Zhang R; Li H; Zhang Y; Wang Y; Wu C; Yan Y; Chen Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31635-31641. PubMed ID: 34181395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Air Stability and High Li-Ion Conductivity of Li
    Ahmad N; Zhou L; Faheem M; Tufail MK; Yang L; Chen R; Zhou Y; Yang W
    ACS Appl Mater Interfaces; 2020 May; 12(19):21548-21558. PubMed ID: 32286785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li-FeF
    Zhang Y; Meng J; Chen K; Wu Q; Wu X; Li C
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33729-33739. PubMed ID: 32602697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.