BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34965378)

  • 1. The Chinese pine genome and methylome unveil key features of conifer evolution.
    Niu S; Li J; Bo W; Yang W; Zuccolo A; Giacomello S; Chen X; Han F; Yang J; Song Y; Nie Y; Zhou B; Wang P; Zuo Q; Zhang H; Ma J; Wang J; Wang L; Zhu Q; Zhao H; Liu Z; Zhang X; Liu T; Pei S; Li Z; Hu Y; Yang Y; Li W; Zan Y; Zhou L; Lin J; Yuan T; Li W; Li Y; Wei H; Wu HX
    Cell; 2022 Jan; 185(1):204-217.e14. PubMed ID: 34965378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks.
    Voronova A; Rendón-Anaya M; Ingvarsson P; Kalendar R; Ruņģis D
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33081418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers.
    Pavy N; Pelgas B; Laroche J; Rigault P; Isabel N; Bousquet J
    BMC Biol; 2012 Oct; 10():84. PubMed ID: 23102090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into conifer giga-genomes.
    De La Torre AR; Birol I; Bousquet J; Ingvarsson PK; Jansson S; Jones SJ; Keeling CI; MacKay J; Nilsson O; Ritland K; Street N; Yanchuk A; Zerbe P; Bohlmann J
    Plant Physiol; 2014 Dec; 166(4):1724-32. PubMed ID: 25349325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size.
    Stival Sena J; Giguère I; Boyle B; Rigault P; Birol I; Zuccolo A; Ritland K; Ritland C; Bohlmann J; Jones S; Bousquet J; Mackay J
    BMC Plant Biol; 2014 Apr; 14():95. PubMed ID: 24734980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Norway spruce genome sequence and conifer genome evolution.
    Nystedt B; Street NR; Wetterbom A; Zuccolo A; Lin YC; Scofield DG; Vezzi F; Delhomme N; Giacomello S; Alexeyenko A; Vicedomini R; Sahlin K; Sherwood E; Elfstrand M; Gramzow L; Holmberg K; Hällman J; Keech O; Klasson L; Koriabine M; Kucukoglu M; Käller M; Luthman J; Lysholm F; Niittylä T; Olson A; Rilakovic N; Ritland C; Rosselló JA; Sena J; Svensson T; Talavera-López C; Theißen G; Tuominen H; Vanneste K; Wu ZQ; Zhang B; Zerbe P; Arvestad L; Bhalerao R; Bohlmann J; Bousquet J; Garcia Gil R; Hvidsten TR; de Jong P; MacKay J; Morgante M; Ritland K; Sundberg B; Thompson SL; Van de Peer Y; Andersson B; Nilsson O; Ingvarsson PK; Lundeberg J; Jansson S
    Nature; 2013 May; 497(7451):579-84. PubMed ID: 23698360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposable elements: powerful contributors to angiosperm evolution and diversity.
    Oliver KR; McComb JA; Greene WK
    Genome Biol Evol; 2013; 5(10):1886-901. PubMed ID: 24065734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms.
    Buschiazzo E; Ritland C; Bohlmann J; Ritland K
    BMC Evol Biol; 2012 Jan; 12():8. PubMed ID: 22264329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation.
    Wegrzyn JL; Liechty JD; Stevens KA; Wu LS; Loopstra CA; Vasquez-Gross HA; Dougherty WM; Lin BY; Zieve JJ; Martínez-García PJ; Holt C; Yandell M; Zimin AV; Yorke JA; Crepeau MW; Puiu D; Salzberg SL; Dejong PJ; Mockaitis K; Main D; Langley CH; Neale DB
    Genetics; 2014 Mar; 196(3):891-909. PubMed ID: 24653211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome-level genome assembly and characterization of the Calophaca sinica genome.
    Cao J; Zhu H; Gao Y; Hu Y; Li X; Shi J; Chen L; Kang H; Ru D; Ren B; Liu B
    DNA Res; 2024 Jun; 31(3):. PubMed ID: 38590243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent local adaptation to climate in distantly related conifers.
    Yeaman S; Hodgins KA; Lotterhos KE; Suren H; Nadeau S; Degner JC; Nurkowski KA; Smets P; Wang T; Gray LK; Liepe KJ; Hamann A; Holliday JA; Whitlock MC; Rieseberg LH; Aitken SN
    Science; 2016 Sep; 353(6306):1431-1433. PubMed ID: 27708038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Gene Content of the Megagenome: Sugar Pine (Pinus lambertiana).
    Gonzalez-Ibeas D; Martinez-Garcia PJ; Famula RA; Delfino-Mix A; Stevens KA; Loopstra CA; Langley CH; Neale DB; Wegrzyn JL
    G3 (Bethesda); 2016 Dec; 6(12):3787-3802. PubMed ID: 27799338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.
    Hamberger B; Hall D; Yuen M; Oddy C; Hamberger B; Keeling CI; Ritland C; Ritland K; Bohlmann J
    BMC Plant Biol; 2009 Aug; 9():106. PubMed ID: 19656416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.
    Seoane-Zonjic P; Cañas RA; Bautista R; Gómez-Maldonado J; Arrillaga I; Fernández-Pozo N; Claros MG; Cánovas FM; Ávila C
    BMC Genomics; 2016 Feb; 17():148. PubMed ID: 26922242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limber pine (Pinus flexilis James) genetic map constructed by exome-seq provides insight into the evolution of disease resistance and a genomic resource for genomics-based breeding.
    Liu JJ; Schoettle AW; Sniezko RA; Yao F; Zamany A; Williams H; Rancourt B
    Plant J; 2019 May; 98(4):745-758. PubMed ID: 30729601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: an important conifer genomic resource.
    Mann IK; Wegrzyn JL; Rajora OP
    BMC Genomics; 2013 Oct; 14():702. PubMed ID: 24119028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence of the Sugar Pine Megagenome.
    Stevens KA; Wegrzyn JL; Zimin A; Puiu D; Crepeau M; Cardeno C; Paul R; Gonzalez-Ibeas D; Koriabine M; Holtz-Morris AE; Martínez-García PJ; Sezen UU; Marçais G; Jermstad K; McGuire PE; Loopstra CA; Davis JM; Eckert A; de Jong P; Yorke JA; Salzberg SL; Neale DB; Langley CH
    Genetics; 2016 Dec; 204(4):1613-1626. PubMed ID: 27794028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage.
    Bagal UR; Leebens-Mack JH; Lorenz WW; Dean JF
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S1. PubMed ID: 22759610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum.
    Deneweth J; Van de Peer Y; Vermeirssen V
    BMC Genomics; 2022 Jan; 23(1):18. PubMed ID: 34983397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Insights into Plant Genome Evolution and Adaptation as Revealed through Transposable Elements and Non-Coding RNAs in Conifers.
    Liu Y; El-Kassaby YA
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30889931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.