BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34965516)

  • 1. Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network.
    Liu Y; Niu H; Ren P; Ren J; Wei X; Liu W; Ding H; Li J; Xia J; Zhang T; Lv H; Yin H; Wang Z
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34965516
    [No Abstract]   [Full Text] [Related]  

  • 2. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-accelerated T2-weighted imaging versus conventional T2-weighted imaging in the female pelvic cavity: image quality and diagnostic performance.
    Kim H; Choi MH; Lee YJ; Han D; Mostapha M; Nickel D
    Acta Radiol; 2024 May; 65(5):499-505. PubMed ID: 38343091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
    Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S
    AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven synthetic MRI FLAIR artifact correction via deep neural network.
    Ryu K; Nam Y; Gho SM; Jang J; Lee HJ; Cha J; Baek HJ; Park J; Kim DH
    J Magn Reson Imaging; 2019 Nov; 50(5):1413-1423. PubMed ID: 30884007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiparametric mapping in the brain from conventional contrast-weighted images using deep learning.
    Qiu S; Chen Y; Ma S; Fan Z; Moser FG; Maya MM; Christodoulou AG; Xie Y; Li D
    Magn Reson Med; 2022 Jan; 87(1):488-495. PubMed ID: 34374468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential clinical feasibility of synthetic MRI in bladder tumors: a comparative study with conventional MRI.
    Li M; Fu W; Ouyang L; Cai Q; Huang Y; Yang X; Pan W; Qian L; Guo Y; Wang H
    Quant Imaging Med Surg; 2023 Aug; 13(8):5109-5118. PubMed ID: 37581035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint.
    Nykänen O; Nevalainen M; Casula V; Isosalo A; Inkinen SI; Nikki M; Lattanzi R; Cloos MA; Nissi MJ; Nieminen MT
    J Magn Reson Imaging; 2023 Aug; 58(2):559-568. PubMed ID: 36562500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A super-resolution framework for the reconstruction of T2-weighted (T2w) time-resolved (TR) 4DMRI using T1w TR-4DMRI as the guidance.
    Nie X; Saleh Z; Kadbi M; Zakian K; Deasy J; Rimner A; Li G
    Med Phys; 2020 Jul; 47(7):3091-3102. PubMed ID: 32166757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image quality using synthetic brain MRI: an age-stratified study.
    Zou M; Zhou Q; Li R; Hu M; Qian L; Yang Z; Zhao J
    Acta Radiol; 2023 May; 64(5):2010-2023. PubMed ID: 36775871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.
    Chen Y; Liu S; Wang Y; Kang Y; Haacke EM
    Magn Reson Imaging; 2018 Feb; 46():130-139. PubMed ID: 29056394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI image synthesis for fluid-attenuated inversion recovery and diffusion-weighted images with deep learning.
    Kawahara D; Yoshimura H; Matsuura T; Saito A; Nagata Y
    Phys Eng Sci Med; 2023 Mar; 46(1):313-323. PubMed ID: 36715853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
    Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H
    Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic MRI with Magnetic Resonance Spin TomogrAphy in Time-Domain (MR-STAT): Results from a Prospective Cross-Sectional Clinical Trial.
    Kleinloog JPD; Mandija S; D'Agata F; Liu H; van der Heide O; Koktas B; Dankbaar JW; Keil VC; Vonken EJ; Jacobs SM; van den Berg CAT; Hendrikse J; van der Kolk AG; Sbrizzi A
    J Magn Reson Imaging; 2023 May; 57(5):1451-1461. PubMed ID: 36098348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a Deep Learning Reconstruction for High-Quality T2-Weighted Breast Magnetic Resonance Imaging.
    Allen TJ; Henze Bancroft LC; Unal O; Estkowski LD; Cashen TA; Korosec F; Strigel RM; Kelcz F; Fowler AM; Gegios A; Thai J; Lebel RM; Holmes JH
    Tomography; 2023 Oct; 9(5):1949-1964. PubMed ID: 37888744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI.
    Genc O; Morrison MA; Villanueva-Meyer JE; Burns B; Hess CP; Banerjee S; Lupo JM
    J Magn Reson Imaging; 2023 Oct; 58(4):1200-1210. PubMed ID: 36733222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.