These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3496553)

  • 1. Neuronal organization underlying visually elicited prey orienting in the frog--II. Anatomical studies on the laterality of central projections.
    Kostyk SK; Grobstein P
    Neuroscience; 1987 Apr; 21(1):57-82. PubMed ID: 3496553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal organization underlying visually elicited prey orienting in the frog--III. Evidence for the existence of an uncrossed descending tectofugal pathway.
    Kostyk SK; Grobstein P
    Neuroscience; 1987 Apr; 21(1):83-96. PubMed ID: 3496554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal organization underlying visually elicited prey orienting in the frog--I. Effects of various unilateral lesions.
    Kostyk SK; Grobstein P
    Neuroscience; 1987 Apr; 21(1):41-55. PubMed ID: 3496552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. II. Evidence for the involvement of a tecto-tegmento-spinal pathway.
    Masino T; Grobstein P
    Exp Brain Res; 1989; 75(2):245-64. PubMed ID: 2785926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tectal connectivity in the frog Rana pipiens: tectotegmental projections and a general analysis of topographic organization.
    Masino T; Grobstein P
    J Comp Neurol; 1990 Jan; 291(1):103-27. PubMed ID: 2298926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. I. Lateralization, parcellation, and an intermediate spatial representation.
    Masino T; Grobstein P
    Exp Brain Res; 1989; 75(2):227-44. PubMed ID: 2785925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of telencephalic lesions on visually mediated prey orienting behavior in the leopard frog (Rana pipiens). I. The effects of complete removal of one telencephalic lobe, with a comparison to the effects of unilateral tectal lobe lesions.
    Patton P; Grobstein P
    Brain Behav Evol; 1998; 51(3):123-43. PubMed ID: 9519287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl.
    Masino T; Knudsen EI
    Exp Brain Res; 1992; 92(2):194-208. PubMed ID: 1493861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant retinal projections to midbrain targets mediate spared visual orienting function in hamsters with neonatal lesions of superior colliculus.
    Carman LS; Schneider GE
    Exp Brain Res; 1992; 90(1):92-102. PubMed ID: 1521619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of telencephalic lesions on visually mediated prey orienting behavior in the leopard frog (Rana pipiens). II. The effects of limited lesions to the telencephalon.
    Patton P; Grobstein P
    Brain Behav Evol; 1998; 51(3):144-61. PubMed ID: 9519288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of non-retinal afferent projections to the frog optic tectum and the substance P immunoreactivity of tectal connections.
    Debski EA; Constantine-Paton M
    Brain Res Dev Brain Res; 1993 Mar; 72(1):21-39. PubMed ID: 7680968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual orienting deficits in frogs with various unilateral lesions.
    Kostyk SK; Grobstein P
    Behav Brain Res; 1982 Dec; 6(4):379-88. PubMed ID: 6983359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optic tectum of the eastern garter snake, Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion.
    Dacey DM; Ulinski PS
    J Comp Neurol; 1986 Mar; 245(4):423-53. PubMed ID: 3700709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tectal projections of an infrared sensitive snake, Crotalus viridis.
    Schroeder DM
    J Comp Neurol; 1981 Jan; 195(3):477-500. PubMed ID: 7204658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of extrinsic tectal connections in Goldfish (Caraccius auratus).
    Grover BG; Sharma SC
    J Comp Neurol; 1981 Mar; 196(3):471-88. PubMed ID: 7217368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The representation of the ipsilateral eye in nucleus isthmi of the leopard frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2002; 19(5):669-79. PubMed ID: 12507333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of topographic connections between the isthmic nuclei and optic tecta in the frog Limnodynastes dorsalis.
    Dann JF; Beazley LD
    Anat Embryol (Berl); 1990; 181(2):167-76. PubMed ID: 2327597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens.
    Gruberg ER; Udin SB
    J Comp Neurol; 1978 Jun; 179(3):487-500. PubMed ID: 305927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative number of cells projecting from contralateral and ipsilateral nucleus isthmi to loci in the optic tectum is dependent on visuotopic location: horseradish peroxidase study in the leopard frog.
    Dudkin EA; Gruberg ER
    J Comp Neurol; 1999 Nov; 414(2):212-6. PubMed ID: 10516592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the topographically organized connections between the nucleus isthmi and the optic tectum after partial tectal ablation in adult goldfish.
    Dunn-Meynell AA; Sharma SC
    J Comp Neurol; 1984 Aug; 227(4):497-510. PubMed ID: 6470220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.