These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34965599)

  • 21. Role of semantic context and talker variability in speech perception of cochlear-implant users and normal-hearing listeners.
    O'Neill ER; Parke MN; Kreft HA; Oxenham AJ
    J Acoust Soc Am; 2021 Feb; 149(2):1224. PubMed ID: 33639827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interdependence of linguistic and indexical speech perception skills in school-age children with early cochlear implantation.
    Geers AE; Davidson LS; Uchanski RM; Nicholas JG
    Ear Hear; 2013 Sep; 34(5):562-74. PubMed ID: 23652814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of High-Variability Speech Recognition in Adult Cochlear Implant Users using PRESTO.
    Tamati TN; Faulkner KF; Pisoni DB
    J Am Acad Audiol; 2023 Oct; 34(9-10):217-224. PubMed ID: 37748726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions.
    O'Neill ER; Kreft HA; Oxenham AJ
    J Acoust Soc Am; 2019 Jul; 146(1):195. PubMed ID: 31370651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some factors underlying individual differences in speech recognition on PRESTO: a first report.
    Tamati TN; Gilbert JL; Pisoni DB
    J Am Acad Audiol; 2013; 24(7):616-34. PubMed ID: 24047949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-auditory neurocognitive skills contribute to speech recognition in adults with cochlear implants.
    Moberly AC; Houston DM; Castellanos I
    Laryngoscope Investig Otolaryngol; 2016 Dec; 1(6):154-162. PubMed ID: 28660253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emotion and Word Recognition for Unprocessed and Vocoded Speech Stimuli.
    Morgan SD; Garrard S; Hoskins T
    Ear Hear; 2022; 43(2):398-407. PubMed ID: 34310412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; EscabĂ­ M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.
    Jahn KN; Stevenson RA; Wallace MT
    Ear Hear; 2017; 38(2):236-243. PubMed ID: 27764001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Verbal working memory and inhibition-concentration in adults with cochlear implants.
    Moberly AC; Houston DM; Harris MS; Adunka OF; Castellanos I
    Laryngoscope Investig Otolaryngol; 2017 Oct; 2(5):254-261. PubMed ID: 29094068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. More Than Words: the Relative Roles of Prosody and Semantics in the Perception of Emotions in Spoken Language by Postlingual Cochlear Implant Users.
    Taitelbaum-Swead R; Icht M; Ben-David BM
    Ear Hear; 2022 Jul-Aug 01; 43(4):1378-1389. PubMed ID: 35030551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing Simulated Channel Interaction Reveals Differences in Phoneme Identification Between Children and Adults With Normal Hearing.
    Jahn KN; DiNino M; Arenberg JG
    Ear Hear; 2019; 40(2):295-311. PubMed ID: 29927780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development, reliability, and validity of PRESTO: a new high-variability sentence recognition test.
    Gilbert JL; Tamati TN; Pisoni DB
    J Am Acad Audiol; 2013 Jan; 24(1):26-36. PubMed ID: 23231814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association of Aging and Cognition With Complex Speech Understanding in Cochlear-Implanted Adults: Use of a Modified National Institutes of Health (NIH) Toolbox Cognitive Assessment.
    Schvartz-Leyzac KC; Giordani B; Pfingst BE
    JAMA Otolaryngol Head Neck Surg; 2023 Mar; 149(3):239-246. PubMed ID: 36701145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurocognitive Factors Contributing to Cochlear Implant Candidacy.
    Moberly AC; Castellanos I; Mattingly JK
    Otol Neurotol; 2018 Dec; 39(10):e1010-e1018. PubMed ID: 30444846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exceptional Speech Recognition Outcomes After Cochlear Implantation: Lessons From Two Case Studies.
    Herbert CJ; Pisoni DB; Kronenberger WG; Nelson RF
    Am J Audiol; 2022 Sep; 31(3):552-566. PubMed ID: 35944073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Top-Down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech.
    Oh SH; Donaldson GS; Kong YY
    Ear Hear; 2016; 37(5):582-92. PubMed ID: 27007220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relations Between Self-reported Executive Functioning and Speech Perception Skills in Adult Cochlear Implant Users.
    Moberly AC; Patel TR; Castellanos I
    Otol Neurotol; 2018 Feb; 39(2):250-257. PubMed ID: 29315194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Talker Adaptation and Lexical Difficulty Impact Word Recognition in Adults with Cochlear Implants.
    Tamati TN; Moberly AC
    Audiol Neurootol; 2022; 27(3):260-270. PubMed ID: 34535583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semantic influences on the perception of degraded speech by individuals with cochlear implants.
    Patro C; Mendel LL
    J Acoust Soc Am; 2020 Mar; 147(3):1778. PubMed ID: 32237796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.