These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34965817)
1. Machine learning and natural language processing to identify falls in electronic patient care records from ambulance attendances. Tohira H; Finn J; Ball S; Brink D; Buzzacott P Inform Health Soc Care; 2022 Oct; 47(4):403-413. PubMed ID: 34965817 [TBL] [Abstract][Full Text] [Related]
2. A clinical text classification paradigm using weak supervision and deep representation. Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584 [TBL] [Abstract][Full Text] [Related]
3. Machine learning algorithms to classify self-harm behaviours in New South Wales Ambulance electronic medical records: A retrospective study. Burnett A; Chen N; Zeritis S; Ware S; McGillivray L; Shand F; Torok M Int J Med Inform; 2022 May; 161():104734. PubMed ID: 35287099 [TBL] [Abstract][Full Text] [Related]
4. Automated outcome classification of emergency department computed tomography imaging reports. Yadav K; Sarioglu E; Smith M; Choi HA Acad Emerg Med; 2013 Aug; 20(8):848-54. PubMed ID: 24033628 [TBL] [Abstract][Full Text] [Related]
5. Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm. Gordon AJ; Banerjee I; Block J; Winstead-Derlega C; Wilson JG; Mitarai T; Jarrett M; Sanyal J; Rubin DL; Wintermark M; Kohn MA Am J Emerg Med; 2022 Jan; 51():388-392. PubMed ID: 34839182 [TBL] [Abstract][Full Text] [Related]
6. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
7. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports. Chen PH; Zafar H; Galperin-Aizenberg M; Cook T J Digit Imaging; 2018 Apr; 31(2):178-184. PubMed ID: 29079959 [TBL] [Abstract][Full Text] [Related]
8. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Cronin RM; Fabbri D; Denny JC; Rosenbloom ST; Jackson GP Int J Med Inform; 2017 Sep; 105():110-120. PubMed ID: 28750904 [TBL] [Abstract][Full Text] [Related]
9. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related]
10. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning. Ferrario A; Demiray B; Yordanova K; Luo M; Martin M J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108 [TBL] [Abstract][Full Text] [Related]
11. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients. Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867 [TBL] [Abstract][Full Text] [Related]
12. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
13. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
14. Applying natural language processing and machine learning techniques to patient experience feedback: a systematic review. Khanbhai M; Anyadi P; Symons J; Flott K; Darzi A; Mayer E BMJ Health Care Inform; 2021 Mar; 28(1):. PubMed ID: 33653690 [TBL] [Abstract][Full Text] [Related]
15. Using Natural Language Processing to Identify Stigmatizing Language in Labor and Birth Clinical Notes. Barcelona V; Scharp D; Moen H; Davoudi A; Idnay BR; Cato K; Topaz M Matern Child Health J; 2024 Mar; 28(3):578-586. PubMed ID: 38147277 [TBL] [Abstract][Full Text] [Related]
16. Using Machine Learning to Capture Quality Metrics from Natural Language: A Case Study of Diabetic Eye Exams. Fong A; Scoulios N; Blumenthal HJ; Anderson RE Methods Inf Med; 2021 Sep; 60(3-04):110-115. PubMed ID: 34598298 [TBL] [Abstract][Full Text] [Related]
17. Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision. Shen Z; Schutte D; Yi Y; Bompelli A; Yu F; Wang Y; Zhang R BMC Med Inform Decis Mak; 2022 Jul; 22(Suppl 1):88. PubMed ID: 35799294 [TBL] [Abstract][Full Text] [Related]
18. Learning regular expressions for clinical text classification. Bui DD; Zeng-Treitler Q J Am Med Inform Assoc; 2014; 21(5):850-7. PubMed ID: 24578357 [TBL] [Abstract][Full Text] [Related]
19. Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization. Brown AD; Kachura JR J Am Coll Radiol; 2019 Jun; 16(6):840-844. PubMed ID: 30833164 [TBL] [Abstract][Full Text] [Related]
20. Advancing equity in breast cancer care: natural language processing for analysing treatment outcomes in under-represented populations. Park JI; Park JW; Zhang K; Kim D BMJ Health Care Inform; 2024 Jul; 31(1):. PubMed ID: 38955389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]