These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34966214)

  • 1. Biotribocorrosion of 3D-Printed silica-coated Ti6Al4V for load-bearing implants.
    Afrouzian A; Avila JD; Bandyopadhyay A
    J Mater Res; 2021 Oct; 36(19):3974-3984. PubMed ID: 34966214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additively Manufactured Ti6Al4V-Si-Hydroxyapatite composites for articulating surfaces of load-bearing implants.
    Avila JD; Alrawahi Z; Bose S; Bandyopadhyay A
    Addit Manuf; 2020 Aug; 34():. PubMed ID: 32432027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.
    Das M; Bhattacharya K; Dittrick SA; Mandal C; Balla VK; Sampath Kumar TS; Bandyopadhyay A; Manna I
    J Mech Behav Biomed Mater; 2014 Jan; 29():259-71. PubMed ID: 24121827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zirconia-Toughened Alumina Coated Ti6Al4V via Additive Manufacturing.
    Avila JD; Bandyopadhyay A
    Mater Lett; 2021 May; 291():. PubMed ID: 33692601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite reinforced Ti6Al4V composites for load-bearing implants.
    Avila JD; Stenberg K; Bose S; Bandyopadhyay A
    Acta Biomater; 2021 Mar; 123():379-392. PubMed ID: 33450413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium-Silicon on CoCr Alloy for Load-Bearing Implants Using Directed Energy Deposition-Based Additive Manufacturing.
    Avila JD; Isik M; Bandyopadhyay A
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51263-51272. PubMed ID: 33167622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser processed TiN reinforced Ti6Al4V composite coatings.
    Balla VK; Bhat A; Bose S; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2012 Feb; 6():9-20. PubMed ID: 22301169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants.
    Bandyopadhyay A; Dittrick S; Gualtieri T; Wu J; Bose S
    J Mech Behav Biomed Mater; 2016 Apr; 57():280-8. PubMed ID: 26826471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesh Ti6Al4V Material Manufactured by Selective Laser Melting (SLM) as a Promising Intervertebral Fusion Cage.
    Przekora A; Kazimierczak P; Wojcik M; Chodorski E; Kropiwnicki J
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tribological behaviour of 3D printed materials for small joint implants: A pilot study.
    Ranuša M; Čípek P; Vrbka M; Paloušek D; Křupka I; Hartl M
    J Mech Behav Biomed Mater; 2022 Aug; 132():105274. PubMed ID: 35636120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V.
    Oliveira LY; Kuromoto NK; Siqueira CJ
    J Mater Sci Mater Med; 2014 Oct; 25(10):2347-55. PubMed ID: 24948374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.
    Vaithilingam J; Prina E; Goodridge RD; Hague RJM; Edmondson S; Rose FRAJ; Christie SDR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():294-303. PubMed ID: 27287125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.
    Berni M; Lopomo N; Marchiori G; Gambardella A; Boi M; Bianchi M; Visani A; Pavan P; Russo A; Marcacci M
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():643-55. PubMed ID: 26952468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study.
    Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y
    Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Wear Performance of TiB
    Chowdhury MSI; Bose B; Fox-Rabinovich G; Veldhuis SC
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles.
    Chudinova EA; Surmeneva MA; Timin AS; Karpov TE; Wittmar A; Ulbricht M; Ivanova A; Loza K; Prymak O; Koptyug A; Epple M; Surmenev RA
    Colloids Surf B Biointerfaces; 2019 Apr; 176():130-139. PubMed ID: 30597410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting.
    Bartolomeu F; Sampaio M; Carvalho O; Pinto E; Alves N; Gomes JR; Silva FS; Miranda G
    J Mech Behav Biomed Mater; 2017 May; 69():128-134. PubMed ID: 28068622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting.
    Jaber H; Kónya J; Kulcsár K; Kovács T
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N+ ion implantation of Ti6Al4V alloy and UHMWPE for total joint replacement application.
    Boampong DK; Green SM; Unsworth A
    J Appl Biomater Biomech; 2003; 1(3):164-71. PubMed ID: 20803453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.